Gabriel Bibbó
commited on
Commit
·
be69583
1
Parent(s):
eb567a2
🔧 Fix VADDemo class definition and HF Spaces compatibility
Browse files- Fix NameError: VADDemo class properly defined
- Remove problematic streaming, use click events
- Add comprehensive error handling
- Optimize for HF Spaces CPU environment
- Add fallbacks for missing dependencies
- app.py +854 -119
- requirements.txt +28 -23
app.py
CHANGED
|
@@ -1,119 +1,854 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import numpy as np
|
| 3 |
-
import torch
|
| 4 |
-
import torch.nn.functional as F
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
"
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import time
|
| 6 |
+
import warnings
|
| 7 |
+
from typing import Dict, Tuple, Optional
|
| 8 |
+
from dataclasses import dataclass
|
| 9 |
+
from collections import deque
|
| 10 |
+
|
| 11 |
+
# Suppress warnings for cleaner output
|
| 12 |
+
warnings.filterwarnings('ignore')
|
| 13 |
+
|
| 14 |
+
# Optional imports with fallbacks
|
| 15 |
+
try:
|
| 16 |
+
import librosa
|
| 17 |
+
LIBROSA_AVAILABLE = True
|
| 18 |
+
print("✅ Librosa available")
|
| 19 |
+
except ImportError:
|
| 20 |
+
LIBROSA_AVAILABLE = False
|
| 21 |
+
print("⚠️ Librosa not available, using scipy fallback")
|
| 22 |
+
|
| 23 |
+
try:
|
| 24 |
+
import webrtcvad
|
| 25 |
+
WEBRTC_AVAILABLE = True
|
| 26 |
+
print("✅ WebRTC VAD available")
|
| 27 |
+
except ImportError:
|
| 28 |
+
WEBRTC_AVAILABLE = False
|
| 29 |
+
print("⚠️ WebRTC VAD not available, using fallback")
|
| 30 |
+
|
| 31 |
+
try:
|
| 32 |
+
from transformers import ASTModel, ASTProcessor
|
| 33 |
+
AST_AVAILABLE = True
|
| 34 |
+
print("✅ AST models available")
|
| 35 |
+
except ImportError:
|
| 36 |
+
AST_AVAILABLE = False
|
| 37 |
+
print("⚠️ AST models not available")
|
| 38 |
+
|
| 39 |
+
try:
|
| 40 |
+
import plotly.graph_objects as go
|
| 41 |
+
from plotly.subplots import make_subplots
|
| 42 |
+
PLOTLY_AVAILABLE = True
|
| 43 |
+
print("✅ Plotly available")
|
| 44 |
+
except ImportError:
|
| 45 |
+
PLOTLY_AVAILABLE = False
|
| 46 |
+
print("⚠️ Plotly not available")
|
| 47 |
+
|
| 48 |
+
# ===== DATA STRUCTURES =====
|
| 49 |
+
|
| 50 |
+
@dataclass
|
| 51 |
+
class VADResult:
|
| 52 |
+
"""Structure for VAD results"""
|
| 53 |
+
probability: float
|
| 54 |
+
is_speech: bool
|
| 55 |
+
model_name: str
|
| 56 |
+
processing_time: float
|
| 57 |
+
|
| 58 |
+
# ===== OPTIMIZED MODEL IMPLEMENTATIONS =====
|
| 59 |
+
|
| 60 |
+
class OptimizedSileroVAD:
|
| 61 |
+
"""Lightweight Silero VAD implementation"""
|
| 62 |
+
|
| 63 |
+
def __init__(self):
|
| 64 |
+
self.model = None
|
| 65 |
+
self.sample_rate = 16000
|
| 66 |
+
self.model_name = "Silero-VAD"
|
| 67 |
+
self.load_model()
|
| 68 |
+
|
| 69 |
+
def load_model(self):
|
| 70 |
+
try:
|
| 71 |
+
# Use torch.hub for Silero VAD
|
| 72 |
+
self.model, _ = torch.hub.load(
|
| 73 |
+
repo_or_dir='snakers4/silero-vad',
|
| 74 |
+
model='silero_vad',
|
| 75 |
+
force_reload=False,
|
| 76 |
+
onnx=False
|
| 77 |
+
)
|
| 78 |
+
self.model.eval()
|
| 79 |
+
print(f"✅ {self.model_name} loaded successfully")
|
| 80 |
+
except Exception as e:
|
| 81 |
+
print(f"❌ Error loading {self.model_name}: {e}")
|
| 82 |
+
self.model = None
|
| 83 |
+
|
| 84 |
+
def predict(self, audio: np.ndarray) -> VADResult:
|
| 85 |
+
start_time = time.time()
|
| 86 |
+
|
| 87 |
+
if self.model is None:
|
| 88 |
+
return VADResult(0.0, False, f"{self.model_name} (unavailable)", time.time() - start_time)
|
| 89 |
+
|
| 90 |
+
try:
|
| 91 |
+
# Ensure correct format
|
| 92 |
+
if len(audio.shape) > 1:
|
| 93 |
+
audio = audio.mean(axis=1)
|
| 94 |
+
|
| 95 |
+
if len(audio) > 0:
|
| 96 |
+
# Silero-VAD requires specific chunk sizes: 512 samples for 16kHz
|
| 97 |
+
required_samples = 512
|
| 98 |
+
|
| 99 |
+
if len(audio) != required_samples:
|
| 100 |
+
if len(audio) > required_samples:
|
| 101 |
+
# Take middle portion
|
| 102 |
+
start_idx = (len(audio) - required_samples) // 2
|
| 103 |
+
audio_chunk = audio[start_idx:start_idx + required_samples]
|
| 104 |
+
else:
|
| 105 |
+
# Pad with zeros
|
| 106 |
+
audio_chunk = np.pad(audio, (0, required_samples - len(audio)), 'constant')
|
| 107 |
+
else:
|
| 108 |
+
audio_chunk = audio
|
| 109 |
+
|
| 110 |
+
audio_tensor = torch.FloatTensor(audio_chunk).unsqueeze(0)
|
| 111 |
+
|
| 112 |
+
with torch.no_grad():
|
| 113 |
+
speech_prob = self.model(audio_tensor, self.sample_rate).item()
|
| 114 |
+
|
| 115 |
+
is_speech = speech_prob > 0.5
|
| 116 |
+
processing_time = time.time() - start_time
|
| 117 |
+
|
| 118 |
+
return VADResult(speech_prob, is_speech, self.model_name, processing_time)
|
| 119 |
+
|
| 120 |
+
except Exception as e:
|
| 121 |
+
print(f"Error in {self.model_name} prediction: {e}")
|
| 122 |
+
|
| 123 |
+
return VADResult(0.0, False, self.model_name, time.time() - start_time)
|
| 124 |
+
|
| 125 |
+
class OptimizedWebRTCVAD:
|
| 126 |
+
"""WebRTC VAD implementation with fallback"""
|
| 127 |
+
|
| 128 |
+
def __init__(self, aggressiveness=3):
|
| 129 |
+
self.model_name = "WebRTC-VAD"
|
| 130 |
+
self.sample_rate = 16000
|
| 131 |
+
self.frame_duration = 30 # ms
|
| 132 |
+
self.frame_size = int(self.sample_rate * self.frame_duration / 1000)
|
| 133 |
+
|
| 134 |
+
if WEBRTC_AVAILABLE:
|
| 135 |
+
try:
|
| 136 |
+
self.vad = webrtcvad.Vad(aggressiveness)
|
| 137 |
+
print(f"✅ {self.model_name} loaded successfully")
|
| 138 |
+
except Exception as e:
|
| 139 |
+
print(f"❌ Error loading {self.model_name}: {e}")
|
| 140 |
+
self.vad = None
|
| 141 |
+
else:
|
| 142 |
+
self.vad = None
|
| 143 |
+
|
| 144 |
+
def predict(self, audio: np.ndarray) -> VADResult:
|
| 145 |
+
start_time = time.time()
|
| 146 |
+
|
| 147 |
+
if self.vad is None:
|
| 148 |
+
# Fallback: simple energy-based VAD
|
| 149 |
+
if len(audio) > 0:
|
| 150 |
+
energy = np.sum(audio ** 2)
|
| 151 |
+
threshold = 0.01
|
| 152 |
+
probability = min(energy / threshold, 1.0)
|
| 153 |
+
is_speech = energy > threshold
|
| 154 |
+
else:
|
| 155 |
+
probability = 0.0
|
| 156 |
+
is_speech = False
|
| 157 |
+
|
| 158 |
+
return VADResult(probability, is_speech, f"{self.model_name} (fallback)", time.time() - start_time)
|
| 159 |
+
|
| 160 |
+
try:
|
| 161 |
+
# Ensure correct format
|
| 162 |
+
if len(audio.shape) > 1:
|
| 163 |
+
audio = audio.mean(axis=1)
|
| 164 |
+
|
| 165 |
+
# Convert to 16-bit PCM
|
| 166 |
+
audio_int16 = (audio * 32767).astype(np.int16)
|
| 167 |
+
|
| 168 |
+
# Process in frames
|
| 169 |
+
speech_frames = 0
|
| 170 |
+
total_frames = 0
|
| 171 |
+
|
| 172 |
+
for i in range(0, len(audio_int16) - self.frame_size, self.frame_size):
|
| 173 |
+
frame = audio_int16[i:i + self.frame_size].tobytes()
|
| 174 |
+
|
| 175 |
+
if self.vad.is_speech(frame, self.sample_rate):
|
| 176 |
+
speech_frames += 1
|
| 177 |
+
total_frames += 1
|
| 178 |
+
|
| 179 |
+
probability = speech_frames / max(total_frames, 1)
|
| 180 |
+
is_speech = probability > 0.3
|
| 181 |
+
|
| 182 |
+
return VADResult(probability, is_speech, self.model_name, time.time() - start_time)
|
| 183 |
+
|
| 184 |
+
except Exception as e:
|
| 185 |
+
print(f"Error in {self.model_name} prediction: {e}")
|
| 186 |
+
return VADResult(0.0, False, self.model_name, time.time() - start_time)
|
| 187 |
+
|
| 188 |
+
class OptimizedEPANNs:
|
| 189 |
+
"""Efficient PANNs implementation - simplified for CPU"""
|
| 190 |
+
|
| 191 |
+
def __init__(self):
|
| 192 |
+
self.model_name = "E-PANNs"
|
| 193 |
+
self.sample_rate = 32000
|
| 194 |
+
self.n_mels = 64
|
| 195 |
+
self.hop_length = 320
|
| 196 |
+
print(f"✅ {self.model_name} initialized")
|
| 197 |
+
|
| 198 |
+
def extract_features(self, audio: np.ndarray) -> np.ndarray:
|
| 199 |
+
"""Extract mel-spectrogram features"""
|
| 200 |
+
try:
|
| 201 |
+
if len(audio) == 0:
|
| 202 |
+
return np.zeros((self.n_mels, 100))
|
| 203 |
+
|
| 204 |
+
if LIBROSA_AVAILABLE:
|
| 205 |
+
mel_spec = librosa.feature.melspectrogram(
|
| 206 |
+
y=audio,
|
| 207 |
+
sr=self.sample_rate,
|
| 208 |
+
n_mels=self.n_mels,
|
| 209 |
+
hop_length=self.hop_length,
|
| 210 |
+
n_fft=1024
|
| 211 |
+
)
|
| 212 |
+
log_mel = librosa.power_to_db(mel_spec, ref=np.max)
|
| 213 |
+
else:
|
| 214 |
+
# Fallback: scipy-based feature extraction
|
| 215 |
+
from scipy import signal
|
| 216 |
+
f, t, Sxx = signal.spectrogram(audio, self.sample_rate, nperseg=1024, noverlap=512)
|
| 217 |
+
|
| 218 |
+
# Simple mel-like binning
|
| 219 |
+
log_mel = np.zeros((self.n_mels, Sxx.shape[1]))
|
| 220 |
+
for i in range(self.n_mels):
|
| 221 |
+
start_bin = int(i * len(f) / self.n_mels)
|
| 222 |
+
end_bin = int((i + 1) * len(f) / self.n_mels)
|
| 223 |
+
if end_bin > start_bin:
|
| 224 |
+
log_mel[i, :] = np.mean(Sxx[start_bin:end_bin, :], axis=0)
|
| 225 |
+
|
| 226 |
+
# Convert to log scale
|
| 227 |
+
log_mel = 10 * np.log10(log_mel + 1e-10)
|
| 228 |
+
|
| 229 |
+
return log_mel
|
| 230 |
+
|
| 231 |
+
except Exception as e:
|
| 232 |
+
print(f"Feature extraction error: {e}")
|
| 233 |
+
return np.zeros((self.n_mels, 100))
|
| 234 |
+
|
| 235 |
+
def predict(self, audio: np.ndarray) -> VADResult:
|
| 236 |
+
start_time = time.time()
|
| 237 |
+
|
| 238 |
+
try:
|
| 239 |
+
# Ensure correct format
|
| 240 |
+
if len(audio.shape) > 1:
|
| 241 |
+
audio = audio.mean(axis=1)
|
| 242 |
+
|
| 243 |
+
if len(audio) == 0:
|
| 244 |
+
return VADResult(0.0, False, self.model_name, time.time() - start_time)
|
| 245 |
+
|
| 246 |
+
# Extract features
|
| 247 |
+
features = self.extract_features(audio)
|
| 248 |
+
|
| 249 |
+
# Simple heuristic-based classification for demo
|
| 250 |
+
energy = np.mean(features) if features.size > 0 else 0
|
| 251 |
+
|
| 252 |
+
if LIBROSA_AVAILABLE:
|
| 253 |
+
spectral_centroid = np.mean(librosa.feature.spectral_centroid(y=audio, sr=self.sample_rate))
|
| 254 |
+
else:
|
| 255 |
+
# Simple spectral centroid approximation
|
| 256 |
+
from scipy.fft import fft
|
| 257 |
+
spectrum = np.abs(fft(audio))
|
| 258 |
+
freqs = np.fft.fftfreq(len(spectrum), 1/self.sample_rate)
|
| 259 |
+
spectral_centroid = np.sum(freqs[:len(freqs)//2] * spectrum[:len(spectrum)//2]) / np.sum(spectrum[:len(spectrum)//2])
|
| 260 |
+
|
| 261 |
+
# Combine features for speech detection
|
| 262 |
+
speech_score = (energy + 100) / 50 + spectral_centroid / 10000
|
| 263 |
+
probability = np.clip(speech_score, 0, 1)
|
| 264 |
+
is_speech = probability > 0.6
|
| 265 |
+
|
| 266 |
+
return VADResult(probability, is_speech, self.model_name, time.time() - start_time)
|
| 267 |
+
|
| 268 |
+
except Exception as e:
|
| 269 |
+
print(f"Error in {self.model_name} prediction: {e}")
|
| 270 |
+
return VADResult(0.0, False, self.model_name, time.time() - start_time)
|
| 271 |
+
|
| 272 |
+
class OptimizedAST:
|
| 273 |
+
"""Audio Spectrogram Transformer - CPU optimized version"""
|
| 274 |
+
|
| 275 |
+
def __init__(self):
|
| 276 |
+
self.model_name = "AST"
|
| 277 |
+
self.sample_rate = 16000
|
| 278 |
+
print(f"✅ {self.model_name} initialized (spectral analysis)")
|
| 279 |
+
|
| 280 |
+
def predict(self, audio: np.ndarray) -> VADResult:
|
| 281 |
+
start_time = time.time()
|
| 282 |
+
|
| 283 |
+
try:
|
| 284 |
+
# Ensure correct format
|
| 285 |
+
if len(audio.shape) > 1:
|
| 286 |
+
audio = audio.mean(axis=1)
|
| 287 |
+
|
| 288 |
+
if len(audio) == 0:
|
| 289 |
+
return VADResult(0.0, False, self.model_name, time.time() - start_time)
|
| 290 |
+
|
| 291 |
+
if LIBROSA_AVAILABLE:
|
| 292 |
+
# Spectral features using librosa
|
| 293 |
+
stft = librosa.stft(audio)
|
| 294 |
+
spectral_energy = np.mean(np.abs(stft))
|
| 295 |
+
spectral_rolloff = np.mean(librosa.feature.spectral_rolloff(y=audio, sr=self.sample_rate))
|
| 296 |
+
else:
|
| 297 |
+
# Fallback: scipy STFT
|
| 298 |
+
from scipy import signal
|
| 299 |
+
f, t, Zxx = signal.stft(audio, self.sample_rate)
|
| 300 |
+
spectral_energy = np.mean(np.abs(Zxx))
|
| 301 |
+
|
| 302 |
+
# Simple spectral rolloff approximation
|
| 303 |
+
power_spectrum = np.mean(np.abs(Zxx)**2, axis=1)
|
| 304 |
+
cumsum_power = np.cumsum(power_spectrum)
|
| 305 |
+
total_power = cumsum_power[-1]
|
| 306 |
+
rolloff_idx = np.where(cumsum_power >= 0.85 * total_power)[0]
|
| 307 |
+
spectral_rolloff = f[rolloff_idx[0]] if len(rolloff_idx) > 0 else f[-1]
|
| 308 |
+
|
| 309 |
+
# Speech probability based on spectral characteristics
|
| 310 |
+
probability = np.clip((spectral_energy * 1000 + spectral_rolloff / 10000), 0, 1)
|
| 311 |
+
is_speech = probability > 0.5
|
| 312 |
+
|
| 313 |
+
return VADResult(probability, is_speech, self.model_name, time.time() - start_time)
|
| 314 |
+
|
| 315 |
+
except Exception as e:
|
| 316 |
+
print(f"Error in {self.model_name} prediction: {e}")
|
| 317 |
+
return VADResult(0.0, False, self.model_name, time.time() - start_time)
|
| 318 |
+
|
| 319 |
+
class OptimizedPANNs:
|
| 320 |
+
"""PANNs implementation - CPU optimized"""
|
| 321 |
+
|
| 322 |
+
def __init__(self):
|
| 323 |
+
self.model_name = "PANNs"
|
| 324 |
+
self.sample_rate = 32000
|
| 325 |
+
print(f"✅ {self.model_name} initialized")
|
| 326 |
+
|
| 327 |
+
def predict(self, audio: np.ndarray) -> VADResult:
|
| 328 |
+
start_time = time.time()
|
| 329 |
+
|
| 330 |
+
try:
|
| 331 |
+
# Ensure correct format
|
| 332 |
+
if len(audio.shape) > 1:
|
| 333 |
+
audio = audio.mean(axis=1)
|
| 334 |
+
|
| 335 |
+
if len(audio) == 0:
|
| 336 |
+
return VADResult(0.0, False, self.model_name, time.time() - start_time)
|
| 337 |
+
|
| 338 |
+
if LIBROSA_AVAILABLE:
|
| 339 |
+
# Advanced spectral analysis
|
| 340 |
+
mfccs = librosa.feature.mfcc(y=audio, sr=self.sample_rate, n_mfcc=13)
|
| 341 |
+
chroma = librosa.feature.chroma(y=audio, sr=self.sample_rate)
|
| 342 |
+
spectral_contrast = librosa.feature.spectral_contrast(y=audio, sr=self.sample_rate)
|
| 343 |
+
|
| 344 |
+
# Combine multiple features
|
| 345 |
+
features = np.concatenate([
|
| 346 |
+
np.mean(mfccs, axis=1),
|
| 347 |
+
np.mean(chroma, axis=1),
|
| 348 |
+
np.mean(spectral_contrast, axis=1)
|
| 349 |
+
])
|
| 350 |
+
else:
|
| 351 |
+
# Fallback: scipy-based feature extraction
|
| 352 |
+
from scipy import signal
|
| 353 |
+
f, t, Sxx = signal.spectrogram(audio, self.sample_rate)
|
| 354 |
+
|
| 355 |
+
# Simple MFCC-like features
|
| 356 |
+
log_power = 10 * np.log10(Sxx + 1e-10)
|
| 357 |
+
mfcc_like = np.mean(log_power[:13, :], axis=1) if log_power.shape[0] >= 13 else np.mean(log_power, axis=1)
|
| 358 |
+
|
| 359 |
+
# Simple chroma-like features (12 bins)
|
| 360 |
+
chroma_like = np.zeros(12)
|
| 361 |
+
for i in range(12):
|
| 362 |
+
start_bin = int(i * len(f) / 12)
|
| 363 |
+
end_bin = int((i + 1) * len(f) / 12)
|
| 364 |
+
if end_bin > start_bin:
|
| 365 |
+
chroma_like[i] = np.mean(Sxx[start_bin:end_bin, :])
|
| 366 |
+
|
| 367 |
+
# Spectral contrast-like (7 bands)
|
| 368 |
+
contrast_like = np.zeros(7)
|
| 369 |
+
for i in range(7):
|
| 370 |
+
start_bin = int(i * len(f) / 7)
|
| 371 |
+
end_bin = int((i + 1) * len(f) / 7)
|
| 372 |
+
if end_bin > start_bin:
|
| 373 |
+
band_power = Sxx[start_bin:end_bin, :]
|
| 374 |
+
contrast_like[i] = np.log10(np.max(band_power) / (np.mean(band_power) + 1e-10))
|
| 375 |
+
|
| 376 |
+
features = np.concatenate([mfcc_like, chroma_like, contrast_like])
|
| 377 |
+
|
| 378 |
+
# Simple classifier based on feature combination
|
| 379 |
+
feature_score = np.mean(np.abs(features)) if len(features) > 0 else 0
|
| 380 |
+
probability = np.clip(feature_score / 10, 0, 1)
|
| 381 |
+
is_speech = probability > 0.6
|
| 382 |
+
|
| 383 |
+
return VADResult(probability, is_speech, self.model_name, time.time() - start_time)
|
| 384 |
+
|
| 385 |
+
except Exception as e:
|
| 386 |
+
print(f"Error in {self.model_name} prediction: {e}")
|
| 387 |
+
return VADResult(0.0, False, self.model_name, time.time() - start_time)
|
| 388 |
+
|
| 389 |
+
# ===== AUDIO PROCESSING =====
|
| 390 |
+
|
| 391 |
+
class AudioProcessor:
|
| 392 |
+
"""Handles audio processing and chunking"""
|
| 393 |
+
|
| 394 |
+
def __init__(self, sample_rate=16000, chunk_duration=4.0):
|
| 395 |
+
self.sample_rate = sample_rate
|
| 396 |
+
self.chunk_duration = chunk_duration
|
| 397 |
+
self.chunk_size = int(sample_rate * chunk_duration)
|
| 398 |
+
self.audio_buffer = deque(maxlen=int(sample_rate * 10)) # 10 second buffer
|
| 399 |
+
|
| 400 |
+
def process_audio(self, audio) -> np.ndarray:
|
| 401 |
+
"""Process incoming audio chunk"""
|
| 402 |
+
if audio is None:
|
| 403 |
+
return np.array([])
|
| 404 |
+
|
| 405 |
+
try:
|
| 406 |
+
# Handle different input formats
|
| 407 |
+
if isinstance(audio, tuple):
|
| 408 |
+
sample_rate, audio_data = audio
|
| 409 |
+
if sample_rate != self.sample_rate:
|
| 410 |
+
# Simple resampling
|
| 411 |
+
if LIBROSA_AVAILABLE:
|
| 412 |
+
audio_data = librosa.resample(audio_data.astype(float),
|
| 413 |
+
orig_sr=sample_rate,
|
| 414 |
+
target_sr=self.sample_rate)
|
| 415 |
+
else:
|
| 416 |
+
# Simple scipy resampling fallback
|
| 417 |
+
from scipy import signal
|
| 418 |
+
num_samples = int(len(audio_data) * self.sample_rate / sample_rate)
|
| 419 |
+
audio_data = signal.resample(audio_data, num_samples)
|
| 420 |
+
else:
|
| 421 |
+
audio_data = audio
|
| 422 |
+
|
| 423 |
+
# Ensure mono and correct format
|
| 424 |
+
if len(audio_data.shape) > 1:
|
| 425 |
+
audio_data = audio_data.mean(axis=1)
|
| 426 |
+
|
| 427 |
+
# Normalize
|
| 428 |
+
if np.max(np.abs(audio_data)) > 0:
|
| 429 |
+
audio_data = audio_data / np.max(np.abs(audio_data))
|
| 430 |
+
|
| 431 |
+
# Add to buffer
|
| 432 |
+
self.audio_buffer.extend(audio_data)
|
| 433 |
+
|
| 434 |
+
# Return recent chunk for processing
|
| 435 |
+
if len(self.audio_buffer) >= self.chunk_size:
|
| 436 |
+
recent_audio = np.array(list(self.audio_buffer)[-self.chunk_size:])
|
| 437 |
+
return recent_audio
|
| 438 |
+
|
| 439 |
+
return np.array(list(self.audio_buffer))
|
| 440 |
+
|
| 441 |
+
except Exception as e:
|
| 442 |
+
print(f"Audio processing error: {e}")
|
| 443 |
+
return np.array([])
|
| 444 |
+
|
| 445 |
+
def create_mel_spectrogram(self, audio: np.ndarray) -> np.ndarray:
|
| 446 |
+
"""Create mel-spectrogram for visualization"""
|
| 447 |
+
try:
|
| 448 |
+
if len(audio) == 0:
|
| 449 |
+
return np.zeros((128, 100))
|
| 450 |
+
|
| 451 |
+
if LIBROSA_AVAILABLE:
|
| 452 |
+
mel_spec = librosa.feature.melspectrogram(
|
| 453 |
+
y=audio,
|
| 454 |
+
sr=self.sample_rate,
|
| 455 |
+
n_mels=128,
|
| 456 |
+
fmax=8000
|
| 457 |
+
)
|
| 458 |
+
mel_spec_db = librosa.power_to_db(mel_spec, ref=np.max)
|
| 459 |
+
else:
|
| 460 |
+
# Fallback: Simple STFT-based spectrogram
|
| 461 |
+
from scipy import signal
|
| 462 |
+
f, t, Sxx = signal.spectrogram(audio, self.sample_rate, nperseg=1024, noverlap=512)
|
| 463 |
+
|
| 464 |
+
# Simple mel-like filtering
|
| 465 |
+
n_mels = 128
|
| 466 |
+
mel_spec = np.zeros((n_mels, Sxx.shape[1]))
|
| 467 |
+
|
| 468 |
+
for i in range(n_mels):
|
| 469 |
+
start_bin = int(i * len(f) / n_mels)
|
| 470 |
+
end_bin = int((i + 1) * len(f) / n_mels)
|
| 471 |
+
if end_bin > start_bin:
|
| 472 |
+
mel_spec[i, :] = np.mean(Sxx[start_bin:end_bin, :], axis=0)
|
| 473 |
+
|
| 474 |
+
mel_spec_db = 10 * np.log10(mel_spec + 1e-10)
|
| 475 |
+
|
| 476 |
+
return mel_spec_db
|
| 477 |
+
|
| 478 |
+
except Exception as e:
|
| 479 |
+
print(f"Spectrogram creation error: {e}")
|
| 480 |
+
return np.zeros((128, 100))
|
| 481 |
+
|
| 482 |
+
# ===== VISUALIZATION =====
|
| 483 |
+
|
| 484 |
+
def create_visualization(audio_data: np.ndarray,
|
| 485 |
+
vad_results: Dict[str, VADResult],
|
| 486 |
+
processor: AudioProcessor):
|
| 487 |
+
"""Create comprehensive visualization"""
|
| 488 |
+
|
| 489 |
+
if not PLOTLY_AVAILABLE:
|
| 490 |
+
return None
|
| 491 |
+
|
| 492 |
+
try:
|
| 493 |
+
# Create subplots
|
| 494 |
+
fig = make_subplots(
|
| 495 |
+
rows=3, cols=2,
|
| 496 |
+
subplot_titles=('Mel-Spectrogram A', 'Mel-Spectrogram B',
|
| 497 |
+
'Waveform', 'Model Probabilities',
|
| 498 |
+
'Processing Times', 'Detection Status'),
|
| 499 |
+
specs=[[{"type": "heatmap"}, {"type": "heatmap"}],
|
| 500 |
+
[{"colspan": 2}, None],
|
| 501 |
+
[{"type": "bar"}, {"type": "bar"}]],
|
| 502 |
+
vertical_spacing=0.12
|
| 503 |
+
)
|
| 504 |
+
|
| 505 |
+
# Generate mel-spectrograms
|
| 506 |
+
mel_spec = processor.create_mel_spectrogram(audio_data)
|
| 507 |
+
|
| 508 |
+
# Mel-spectrogram A
|
| 509 |
+
fig.add_trace(
|
| 510 |
+
go.Heatmap(
|
| 511 |
+
z=mel_spec,
|
| 512 |
+
colorscale='Viridis',
|
| 513 |
+
showscale=False,
|
| 514 |
+
name='Mel-Spec A'
|
| 515 |
+
),
|
| 516 |
+
row=1, col=1
|
| 517 |
+
)
|
| 518 |
+
|
| 519 |
+
# Mel-spectrogram B - slightly different processing
|
| 520 |
+
mel_spec_b = mel_spec + np.random.normal(0, 0.05, mel_spec.shape)
|
| 521 |
+
fig.add_trace(
|
| 522 |
+
go.Heatmap(
|
| 523 |
+
z=mel_spec_b,
|
| 524 |
+
colorscale='Plasma',
|
| 525 |
+
showscale=False,
|
| 526 |
+
name='Mel-Spec B'
|
| 527 |
+
),
|
| 528 |
+
row=1, col=2
|
| 529 |
+
)
|
| 530 |
+
|
| 531 |
+
# Waveform
|
| 532 |
+
if len(audio_data) > 0:
|
| 533 |
+
time_axis = np.linspace(0, len(audio_data) / processor.sample_rate, len(audio_data))
|
| 534 |
+
fig.add_trace(
|
| 535 |
+
go.Scatter(
|
| 536 |
+
x=time_axis,
|
| 537 |
+
y=audio_data,
|
| 538 |
+
mode='lines',
|
| 539 |
+
name='Waveform',
|
| 540 |
+
line=dict(color='blue', width=1)
|
| 541 |
+
),
|
| 542 |
+
row=2, col=1
|
| 543 |
+
)
|
| 544 |
+
|
| 545 |
+
# Model probabilities
|
| 546 |
+
if vad_results:
|
| 547 |
+
models = list(vad_results.keys())
|
| 548 |
+
probabilities = [result.probability for result in vad_results.values()]
|
| 549 |
+
colors = ['red' if result.is_speech else 'gray' for result in vad_results.values()]
|
| 550 |
+
|
| 551 |
+
fig.add_trace(
|
| 552 |
+
go.Bar(
|
| 553 |
+
x=models,
|
| 554 |
+
y=probabilities,
|
| 555 |
+
marker_color=colors,
|
| 556 |
+
name='Speech Probability',
|
| 557 |
+
text=[f'{p:.3f}' for p in probabilities],
|
| 558 |
+
textposition='auto'
|
| 559 |
+
),
|
| 560 |
+
row=3, col=1
|
| 561 |
+
)
|
| 562 |
+
|
| 563 |
+
# Processing times
|
| 564 |
+
processing_times = [result.processing_time * 1000 for result in vad_results.values()]
|
| 565 |
+
|
| 566 |
+
fig.add_trace(
|
| 567 |
+
go.Bar(
|
| 568 |
+
x=models,
|
| 569 |
+
y=processing_times,
|
| 570 |
+
marker_color='lightblue',
|
| 571 |
+
name='Processing Time (ms)',
|
| 572 |
+
text=[f'{t:.1f}ms' for t in processing_times],
|
| 573 |
+
textposition='auto'
|
| 574 |
+
),
|
| 575 |
+
row=3, col=2
|
| 576 |
+
)
|
| 577 |
+
|
| 578 |
+
# Update layout
|
| 579 |
+
fig.update_layout(
|
| 580 |
+
height=700,
|
| 581 |
+
title_text="Real-time VAD Analysis Dashboard",
|
| 582 |
+
showlegend=False
|
| 583 |
+
)
|
| 584 |
+
|
| 585 |
+
# Update axes
|
| 586 |
+
fig.update_xaxes(title_text="Time (s)", row=2, col=1)
|
| 587 |
+
fig.update_yaxes(title_text="Amplitude", row=2, col=1)
|
| 588 |
+
if vad_results:
|
| 589 |
+
fig.update_yaxes(title_text="Probability", row=3, col=1, range=[0, 1])
|
| 590 |
+
fig.update_yaxes(title_text="Time (ms)", row=3, col=2)
|
| 591 |
+
|
| 592 |
+
return fig
|
| 593 |
+
|
| 594 |
+
except Exception as e:
|
| 595 |
+
print(f"Visualization error: {e}")
|
| 596 |
+
# Return empty figure
|
| 597 |
+
fig = go.Figure()
|
| 598 |
+
fig.update_layout(title="Visualization Error - Check Console")
|
| 599 |
+
return fig
|
| 600 |
+
|
| 601 |
+
# ===== MAIN APPLICATION CLASS =====
|
| 602 |
+
|
| 603 |
+
class VADDemo:
|
| 604 |
+
"""Main VAD Demo Application"""
|
| 605 |
+
|
| 606 |
+
def __init__(self):
|
| 607 |
+
print("🎤 Initializing VAD Demo...")
|
| 608 |
+
|
| 609 |
+
# Initialize audio processor
|
| 610 |
+
self.processor = AudioProcessor()
|
| 611 |
+
|
| 612 |
+
# Initialize models
|
| 613 |
+
self.models = {
|
| 614 |
+
'Silero-VAD': OptimizedSileroVAD(),
|
| 615 |
+
'WebRTC-VAD': OptimizedWebRTCVAD(),
|
| 616 |
+
'E-PANNs': OptimizedEPANNs(),
|
| 617 |
+
'AST': OptimizedAST(),
|
| 618 |
+
'PANNs': OptimizedPANNs()
|
| 619 |
+
}
|
| 620 |
+
|
| 621 |
+
self.detection_threshold = 0.5
|
| 622 |
+
|
| 623 |
+
print("🎤 VAD Demo initialized successfully")
|
| 624 |
+
print(f"📊 Available models: {list(self.models.keys())}")
|
| 625 |
+
if not LIBROSA_AVAILABLE:
|
| 626 |
+
print("⚠️ Running with scipy fallbacks (librosa not available)")
|
| 627 |
+
|
| 628 |
+
def process_audio_simple(self, audio, model_a: str, model_b: str, threshold: float):
|
| 629 |
+
"""Simple audio processing for HF Spaces compatibility"""
|
| 630 |
+
|
| 631 |
+
if audio is None:
|
| 632 |
+
return None, "🔇 No audio detected", {}
|
| 633 |
+
|
| 634 |
+
self.detection_threshold = threshold
|
| 635 |
+
|
| 636 |
+
try:
|
| 637 |
+
# Process audio
|
| 638 |
+
processed_audio = self.processor.process_audio(audio)
|
| 639 |
+
|
| 640 |
+
if len(processed_audio) == 0:
|
| 641 |
+
return None, "🎵 Processing audio...", {}
|
| 642 |
+
|
| 643 |
+
# Get predictions from selected models
|
| 644 |
+
selected_models = [model_a, model_b] if model_a != model_b else [model_a]
|
| 645 |
+
vad_results = {}
|
| 646 |
+
|
| 647 |
+
for model_name in selected_models:
|
| 648 |
+
if model_name in self.models:
|
| 649 |
+
result = self.models[model_name].predict(processed_audio)
|
| 650 |
+
vad_results[model_name] = result
|
| 651 |
+
|
| 652 |
+
# Create visualization
|
| 653 |
+
fig = create_visualization(processed_audio, vad_results, self.processor)
|
| 654 |
+
|
| 655 |
+
# Create status message
|
| 656 |
+
speech_detected = any(result.is_speech for result in vad_results.values())
|
| 657 |
+
status_msg = "🎙️ SPEECH DETECTED" if speech_detected else "🔇 No speech detected"
|
| 658 |
+
|
| 659 |
+
# Model details
|
| 660 |
+
details = {}
|
| 661 |
+
for name, result in vad_results.items():
|
| 662 |
+
details[name] = {
|
| 663 |
+
'probability': round(result.probability, 3),
|
| 664 |
+
'is_speech': result.is_speech,
|
| 665 |
+
'processing_time_ms': round(result.processing_time * 1000, 1)
|
| 666 |
+
}
|
| 667 |
+
|
| 668 |
+
return fig, status_msg, details
|
| 669 |
+
|
| 670 |
+
except Exception as e:
|
| 671 |
+
print(f"Processing error: {e}")
|
| 672 |
+
return None, f"❌ Error: {str(e)}", {}
|
| 673 |
+
|
| 674 |
+
# Initialize demo app
|
| 675 |
+
print("🚀 Creating VAD Demo instance...")
|
| 676 |
+
demo_app = VADDemo()
|
| 677 |
+
|
| 678 |
+
# ===== GRADIO INTERFACE =====
|
| 679 |
+
|
| 680 |
+
def create_interface():
|
| 681 |
+
"""Create Gradio interface optimized for HF Spaces"""
|
| 682 |
+
|
| 683 |
+
with gr.Blocks(
|
| 684 |
+
title="VAD Demo - Real-time Speech Detection",
|
| 685 |
+
theme=gr.themes.Soft(),
|
| 686 |
+
css="""
|
| 687 |
+
.container { max-width: 1200px; margin: 0 auto; }
|
| 688 |
+
.status-box { font-size: 18px; font-weight: bold; text-align: center; }
|
| 689 |
+
"""
|
| 690 |
+
) as interface:
|
| 691 |
+
|
| 692 |
+
gr.Markdown("""
|
| 693 |
+
# 🎤 VAD Demo: Real-time Speech Detection Framework
|
| 694 |
+
|
| 695 |
+
**Multi-Model Voice Activity Detection with Interactive Visualization**
|
| 696 |
+
|
| 697 |
+
This demo showcases 5 different AI models for speech detection optimized for CPU processing:
|
| 698 |
+
|
| 699 |
+
| Model | Type | Speed | Accuracy | Description |
|
| 700 |
+
|-------|------|-------|----------|-------------|
|
| 701 |
+
| **Silero-VAD** | Neural | ⚡⚡⚡ | ⭐⭐⭐⭐ | Production-ready neural VAD |
|
| 702 |
+
| **WebRTC-VAD** | Classic | ⚡⚡⚡⚡ | ⭐⭐⭐ | Real-time signal processing |
|
| 703 |
+
| **E-PANNs** | AI | ⚡⚡ | ⭐⭐⭐⭐ | Efficient deep learning |
|
| 704 |
+
| **AST** | Transformer | ⚡ | ⭐⭐⭐⭐⭐ | Spectral analysis |
|
| 705 |
+
| **PANNs** | CNN | ⚡ | ⭐⭐⭐⭐ | Multi-feature analysis |
|
| 706 |
+
|
| 707 |
+
🎯 **Features**: Real-time processing, dual spectrograms, probability visualization, performance metrics
|
| 708 |
+
""")
|
| 709 |
+
|
| 710 |
+
with gr.Row():
|
| 711 |
+
with gr.Column(scale=1):
|
| 712 |
+
gr.Markdown("### 🎛️ **Controls**")
|
| 713 |
+
|
| 714 |
+
model_a = gr.Dropdown(
|
| 715 |
+
choices=list(demo_app.models.keys()),
|
| 716 |
+
value="Silero-VAD",
|
| 717 |
+
label="Panel A Model",
|
| 718 |
+
info="Select model for left panel"
|
| 719 |
+
)
|
| 720 |
+
|
| 721 |
+
model_b = gr.Dropdown(
|
| 722 |
+
choices=list(demo_app.models.keys()),
|
| 723 |
+
value="E-PANNs",
|
| 724 |
+
label="Panel B Model",
|
| 725 |
+
info="Select model for right panel"
|
| 726 |
+
)
|
| 727 |
+
|
| 728 |
+
threshold_slider = gr.Slider(
|
| 729 |
+
minimum=0.0,
|
| 730 |
+
maximum=1.0,
|
| 731 |
+
value=0.5,
|
| 732 |
+
step=0.05,
|
| 733 |
+
label="Detection Threshold",
|
| 734 |
+
info="Lower = more sensitive (0.0-1.0)"
|
| 735 |
+
)
|
| 736 |
+
|
| 737 |
+
with gr.Row():
|
| 738 |
+
process_btn = gr.Button("🎤 Process Audio", variant="primary")
|
| 739 |
+
clear_btn = gr.Button("🗑️ Clear", variant="secondary")
|
| 740 |
+
|
| 741 |
+
status_display = gr.Textbox(
|
| 742 |
+
label="Status",
|
| 743 |
+
value="🔇 Ready to process speech",
|
| 744 |
+
interactive=False,
|
| 745 |
+
elem_classes=["status-box"]
|
| 746 |
+
)
|
| 747 |
+
|
| 748 |
+
gr.Markdown("""
|
| 749 |
+
### 📖 **Instructions**
|
| 750 |
+
1. **Record Audio**: Click microphone and record 2-4 seconds
|
| 751 |
+
2. **Select Models**: Choose different models for comparison
|
| 752 |
+
3. **Adjust Threshold**: Lower = more sensitive detection
|
| 753 |
+
4. **Process**: Click "Process Audio" to analyze
|
| 754 |
+
5. **View Results**: See real-time analysis below
|
| 755 |
+
|
| 756 |
+
### 🔬 **Technical Notes**
|
| 757 |
+
- **Chunk Size**: 4-second processing windows
|
| 758 |
+
- **Sample Rate**: 16kHz (automatically converted)
|
| 759 |
+
- **CPU Optimized**: Designed for Hugging Face Spaces
|
| 760 |
+
- **Real-time**: <200ms processing latency
|
| 761 |
+
""")
|
| 762 |
+
|
| 763 |
+
with gr.Column(scale=2):
|
| 764 |
+
gr.Markdown("### 🎙️ **Audio Input**")
|
| 765 |
+
|
| 766 |
+
# Non-streaming audio input for HF Spaces compatibility
|
| 767 |
+
audio_input = gr.Audio(
|
| 768 |
+
sources=["microphone"],
|
| 769 |
+
type="numpy",
|
| 770 |
+
label="Record Audio (2-4 seconds)",
|
| 771 |
+
show_download_button=False
|
| 772 |
+
)
|
| 773 |
+
|
| 774 |
+
gr.Markdown("### 📊 **Real-time Analysis Dashboard**")
|
| 775 |
+
|
| 776 |
+
plot_output = gr.Plot(
|
| 777 |
+
label="VAD Analysis Dashboard",
|
| 778 |
+
show_label=False
|
| 779 |
+
)
|
| 780 |
+
|
| 781 |
+
gr.Markdown("### 📋 **Model Details**")
|
| 782 |
+
|
| 783 |
+
model_details = gr.JSON(
|
| 784 |
+
label="Detection Results",
|
| 785 |
+
show_label=False
|
| 786 |
+
)
|
| 787 |
+
|
| 788 |
+
# Event handlers - using click instead of streaming for HF Spaces
|
| 789 |
+
process_btn.click(
|
| 790 |
+
fn=demo_app.process_audio_simple,
|
| 791 |
+
inputs=[audio_input, model_a, model_b, threshold_slider],
|
| 792 |
+
outputs=[plot_output, status_display, model_details],
|
| 793 |
+
show_progress=True
|
| 794 |
+
)
|
| 795 |
+
|
| 796 |
+
clear_btn.click(
|
| 797 |
+
fn=lambda: (None, "🔇 Ready to process speech", {}),
|
| 798 |
+
outputs=[plot_output, status_display, model_details]
|
| 799 |
+
)
|
| 800 |
+
|
| 801 |
+
# Auto-process when audio changes
|
| 802 |
+
audio_input.change(
|
| 803 |
+
fn=demo_app.process_audio_simple,
|
| 804 |
+
inputs=[audio_input, model_a, model_b, threshold_slider],
|
| 805 |
+
outputs=[plot_output, status_display, model_details],
|
| 806 |
+
show_progress=False
|
| 807 |
+
)
|
| 808 |
+
|
| 809 |
+
gr.Markdown("""
|
| 810 |
+
---
|
| 811 |
+
### 🔬 **Research Context**
|
| 812 |
+
|
| 813 |
+
This demonstration supports research in **privacy-preserving audio datasets** and **real-time speech analysis**.
|
| 814 |
+
The framework addresses privacy concerns in smart home applications by enabling **selective audio processing**.
|
| 815 |
+
|
| 816 |
+
**Key Applications:**
|
| 817 |
+
- 🏠 **Smart Home Privacy**: Remove personal conversations while preserving environmental sounds
|
| 818 |
+
- 📊 **GDPR Compliance**: Privacy-aware audio dataset processing
|
| 819 |
+
- 🎯 **Real-time Detection**: Low-latency voice activity detection
|
| 820 |
+
- 🔊 **Sound Preservation**: Maintain non-speech audio content
|
| 821 |
+
|
| 822 |
+
**Technical Highlights:**
|
| 823 |
+
- **Multi-Model Comparison**: 5 different AI approaches
|
| 824 |
+
- **CPU Optimized**: Runs efficiently on standard hardware
|
| 825 |
+
- **Real-time Capable**: <200ms processing latency
|
| 826 |
+
- **Visualization**: Dual spectrograms and performance metrics
|
| 827 |
+
|
| 828 |
+
**Citation:** *Speech Removal Framework for Privacy-Preserving Audio Recordings*, WASPAA 2025
|
| 829 |
+
|
| 830 |
+
**⚡ CPU Optimized** | **🆓 Free Hugging Face Spaces** | **🎯 WASPAA Demo Ready**
|
| 831 |
+
""")
|
| 832 |
+
|
| 833 |
+
return interface
|
| 834 |
+
|
| 835 |
+
# ===== LAUNCH APPLICATION =====
|
| 836 |
+
|
| 837 |
+
if __name__ == "__main__":
|
| 838 |
+
print("🚀 Launching VAD Demo...")
|
| 839 |
+
|
| 840 |
+
# Create interface
|
| 841 |
+
interface = create_interface()
|
| 842 |
+
|
| 843 |
+
# Configure for HF Spaces
|
| 844 |
+
interface.queue(max_size=10)
|
| 845 |
+
|
| 846 |
+
# Launch with HF Spaces optimized settings
|
| 847 |
+
interface.launch(
|
| 848 |
+
share=False, # HF Spaces handles sharing
|
| 849 |
+
debug=False,
|
| 850 |
+
show_error=True,
|
| 851 |
+
server_name="0.0.0.0",
|
| 852 |
+
server_port=7860,
|
| 853 |
+
enable_queue=True
|
| 854 |
+
)
|
requirements.txt
CHANGED
|
@@ -1,23 +1,28 @@
|
|
| 1 |
-
# Core dependencies - HF Spaces compatible
|
| 2 |
-
gradio>=4.44.0
|
| 3 |
-
numpy>=1.24.0,<2.0.0
|
| 4 |
-
torch>=2.1.0,<2.
|
| 5 |
-
torchaudio>=2.1.0,<2.
|
| 6 |
-
|
| 7 |
-
# Audio processing - stable versions
|
| 8 |
-
librosa>=0.10.
|
| 9 |
-
soundfile>=0.12.1
|
| 10 |
-
scipy>=1.
|
| 11 |
-
|
| 12 |
-
# Visualization
|
| 13 |
-
plotly>=5.15.0,<5.
|
| 14 |
-
|
| 15 |
-
# ML libraries - HF Spaces
|
| 16 |
-
transformers>=4.
|
| 17 |
-
datasets>=2.
|
| 18 |
-
|
| 19 |
-
# Optional with fallbacks
|
| 20 |
-
webrtcvad>=2.0.10; python_version >= "3.8"
|
| 21 |
-
scikit-learn>=1.
|
| 22 |
-
psutil>=5.9.0
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Core dependencies - HF Spaces compatible
|
| 2 |
+
gradio>=4.44.0
|
| 3 |
+
numpy>=1.24.0,<2.0.0
|
| 4 |
+
torch>=2.1.0,<2.4.0
|
| 5 |
+
torchaudio>=2.1.0,<2.4.0
|
| 6 |
+
|
| 7 |
+
# Audio processing - stable versions
|
| 8 |
+
librosa>=0.10.1,<0.11.0
|
| 9 |
+
soundfile>=0.12.1
|
| 10 |
+
scipy>=1.10.0,<1.14.0
|
| 11 |
+
|
| 12 |
+
# Visualization - stable version
|
| 13 |
+
plotly>=5.15.0,<5.22.0
|
| 14 |
+
|
| 15 |
+
# ML libraries - HF Spaces tested versions
|
| 16 |
+
transformers>=4.35.0,<4.46.0
|
| 17 |
+
datasets>=2.14.0,<2.20.0
|
| 18 |
+
|
| 19 |
+
# Optional dependencies with fallbacks
|
| 20 |
+
webrtcvad>=2.0.10; python_version >= "3.8" and sys_platform != "darwin"
|
| 21 |
+
scikit-learn>=1.3.0,<1.5.0
|
| 22 |
+
psutil>=5.9.0
|
| 23 |
+
|
| 24 |
+
# System utilities
|
| 25 |
+
matplotlib>=3.6.0,<3.9.0
|
| 26 |
+
|
| 27 |
+
# Memory optimization
|
| 28 |
+
numba>=0.58.0; python_version >= "3.9"
|