Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import torch
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
from donut import DonutModel
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def demo_process_vqa(input_img, question):
|
| 10 |
+
global pretrained_model, task_prompt, task_name
|
| 11 |
+
# input_img = Image.fromarray(input_img)
|
| 12 |
+
user_prompt = task_prompt.replace("{user_input}", question)
|
| 13 |
+
output = pretrained_model.inference(input_img, prompt=user_prompt)["predictions"][0]
|
| 14 |
+
return output
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def demo_process(input_img):
|
| 18 |
+
global pretrained_model, task_prompt, task_name,security_layer
|
| 19 |
+
input_img = Image.fromarray(input_img)
|
| 20 |
+
sec = security_layer.inference(image=input_img,prompt="<s_rvlcdip>")['predictions'][0]
|
| 21 |
+
print(sec)
|
| 22 |
+
if sec['class']=="invoice":
|
| 23 |
+
output = pretrained_model.inference(image=input_img, prompt="<s_cord-v2>")["predictions"][0]
|
| 24 |
+
return output
|
| 25 |
+
return sec
|
| 26 |
+
|
| 27 |
+
task_name="cord-v2"
|
| 28 |
+
if "docvqa" == task_name:
|
| 29 |
+
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
|
| 30 |
+
else: # rvlcdip, cord, ...
|
| 31 |
+
task_prompt = f"<s_{task_name}>"
|
| 32 |
+
|
| 33 |
+
security_layer = DonutModel.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip")
|
| 34 |
+
|
| 35 |
+
pretrained_model = DonutModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
if torch.cuda.is_available():
|
| 39 |
+
pretrained_model.half()
|
| 40 |
+
security_layer.half()
|
| 41 |
+
device = torch.device("cuda")
|
| 42 |
+
pretrained_model.to(device)
|
| 43 |
+
security_layer.to(device)
|
| 44 |
+
else:
|
| 45 |
+
pretrained_model.encoder.to(torch.bfloat16)
|
| 46 |
+
security_layer.encoder.to(torch.bfloat16)
|
| 47 |
+
|
| 48 |
+
pretrained_model.eval()
|
| 49 |
+
security_layer.eval()
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
demo = gr.Interface(
|
| 53 |
+
fn=demo_process_vqa if task_name == "docvqa" else demo_process,
|
| 54 |
+
inputs=["image", "text"] if task_name == "docvqa" else "image",
|
| 55 |
+
outputs="json",
|
| 56 |
+
title=f"Donut 🍩 demonstration for `{task_name}` task",
|
| 57 |
+
concurrency_limit=10,
|
| 58 |
+
description="Get invoice details if invoice"
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
demo.queue(default_concurrency_limit=2,max_size=5)
|
| 62 |
+
demo.launch(debug=True,share=True, inline=False)
|