File size: 6,212 Bytes
09c284f
181483f
 
 
 
 
 
 
 
09c284f
181483f
 
09c284f
181483f
 
 
 
 
 
 
 
 
 
09c284f
181483f
 
 
 
09c284f
181483f
 
 
 
09c284f
181483f
 
 
 
 
 
 
 
 
 
 
 
 
09c284f
181483f
 
 
 
 
 
 
 
 
 
09c284f
181483f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09c284f
 
 
 
 
181483f
09c284f
181483f
 
 
09c284f
181483f
 
09c284f
181483f
 
 
 
 
 
09c284f
181483f
 
 
09c284f
181483f
 
 
 
 
 
 
 
 
 
 
09c284f
181483f
 
 
 
 
 
 
 
 
 
 
 
 
09c284f
181483f
09c284f
181483f
 
 
09c284f
181483f
 
09c284f
181483f
 
 
 
 
 
09c284f
181483f
 
 
 
 
 
5f577c4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Import required libraries
from dotenv import load_dotenv
from openai import OpenAI
import json
import os
import requests
from pypdf import PdfReader
import gradio as gr

# Load environment variables from .env file (for API keys, etc.)
load_dotenv(override=True)

# Helper function to send push notifications using Pushover
def push(text):
    requests.post(
        "https://api.pushover.net/1/messages.json",
        data={
            "token": os.getenv("PUSHOVER_TOKEN"),
            "user": os.getenv("PUSHOVER_USER"),
            "message": text,
        }
    )

# Tool: Record user details (e.g., when a user provides their email)
def record_user_details(email, name="Name not provided", notes="not provided"):
    push(f"Recording {name} with email {email} and notes {notes}")
    return {"recorded": "ok"}

# Tool: Record any question that could not be answered
def record_unknown_question(question):
    push(f"Recording {question}")
    return {"recorded": "ok"}

# JSON schema for the record_user_details tool (for OpenAI function calling)
record_user_details_json = {
    "name": "record_user_details",
    "description": "Use this tool to record that a user is interested in being in touch and provided an email address",
    "parameters": {
        "type": "object",
        "properties": {
            "email": {
                "type": "string",
                "description": "The email address of this user"
            },
            "name": {
                "type": "string",
                "description": "The user's name, if they provided it"
            },
            "notes": {
                "type": "string",
                "description": "Any additional information about the conversation that's worth recording to give context"
            }
        },
        "required": ["email"],
        "additionalProperties": False
    }
}

# JSON schema for the record_unknown_question tool (for OpenAI function calling)
record_unknown_question_json = {
    "name": "record_unknown_question",
    "description": "Always use this tool to record any question that couldn't be answered as you didn't know the answer",
    "parameters": {
        "type": "object",
        "properties": {
            "question": {
                "type": "string",
                "description": "The question that couldn't be answered"
            },
        },
        "required": ["question"],
        "additionalProperties": False
    }
}

# List of available tools for the OpenAI agent
tools = [
    {"type": "function", "function": record_user_details_json},
    {"type": "function", "function": record_unknown_question_json}
]

# Main class representing "Me" (the agent persona)
class Me:

    def __init__(self):
        # Initialize OpenAI client and load profile information
        self.openai = OpenAI()
        self.name = "Harish"
        # Read LinkedIn profile from PDF
        reader = PdfReader("me/linkedin.pdf")
        self.linkedin = ""
        for page in reader.pages:
            text = page.extract_text()
            if text:
                self.linkedin += text
        # Read summary from text file
        with open("me/summary.txt", "r", encoding="utf-8") as f:
            self.summary = f.read()

    # Handle tool calls from the OpenAI agent (function calling)
    def handle_tool_call(self, tool_calls):
        results = []
        for tool_call in tool_calls:
            tool_name = tool_call.function.name
            arguments = json.loads(tool_call.function.arguments)
            print(f"Tool called: {tool_name}", flush=True)
            tool = globals().get(tool_name)
            result = tool(**arguments) if tool else {}
            results.append({"role": "tool","content": json.dumps(result),"tool_call_id": tool_call.id})
        return results
    
    # Compose the system prompt for the agent, including summary and LinkedIn profile
    def system_prompt(self):
        system_prompt = f"You are acting as {self.name}. You are answering questions on {self.name}'s website, \
particularly questions related to {self.name}'s career, background, skills and experience. \
Your responsibility is to represent {self.name} for interactions on the website as faithfully as possible. \
You are given a summary of {self.name}'s background and LinkedIn profile which you can use to answer questions. \
Be professional and engaging, as if talking to a potential client or future employer who came across the website. \
If you don't know the answer to any question, use your record_unknown_question tool to record the question that you couldn't answer, even if it's about something trivial or unrelated to career. \
If the user is engaging in discussion, try to steer them towards getting in touch via email; ask for their email and record it using your record_user_details tool. "

        system_prompt += f"\n\n## Summary:\n{self.summary}\n\n## LinkedIn Profile:\n{self.linkedin}\n\n"
        system_prompt += f"With this context, please chat with the user, always staying in character as {self.name}."
        return system_prompt
    
    # Main chat method: handles conversation, tool calls, and responses
    def chat(self, message, history):
        # Build message history for OpenAI API
        messages = [{"role": "system", "content": self.system_prompt()}] + history + [{"role": "user", "content": message}]
        done = False
        while not done:
            # Call OpenAI chat completion with tools
            response = self.openai.chat.completions.create(model="gpt-4o-mini", messages=messages, tools=tools)
            if response.choices[0].finish_reason=="tool_calls":
                # If a tool call is required, handle it and continue
                message = response.choices[0].message
                tool_calls = message.tool_calls
                results = self.handle_tool_call(tool_calls)
                messages.append(message)
                messages.extend(results)
            else:
                # Otherwise, return the agent's response
                done = True
        return response.choices[0].message.content
    

if __name__ == "__main__":
    me = Me()
    gr.ChatInterface(me.chat, type="messages").launch()