Spaces:
Build error
Build error
| ''' | |
| Borrowed and modified from sd-scripts, publicly available at | |
| https://github.com/kohya-ss/sd-scripts/blob/main/library/model_util.py | |
| ''' | |
| from diffusers import UNet2DConditionModel | |
| # Model paras of stable diffusion in diffUsers | |
| NUM_TRAIN_TIMESTEPS = 1000 | |
| BETA_START = 0.00085 | |
| BETA_END = 0.0120 | |
| UNET_PARAMS_MODEL_CHANNELS = 320 | |
| UNET_PARAMS_CHANNEL_MULT = [1, 2, 4, 4] | |
| UNET_PARAMS_ATTENTION_RESOLUTIONS = [4, 2, 1] | |
| UNET_PARAMS_IMAGE_SIZE = 64 # fixed from old invalid value `32` | |
| UNET_PARAMS_IN_CHANNELS = 4 | |
| UNET_PARAMS_OUT_CHANNELS = 4 | |
| UNET_PARAMS_NUM_RES_BLOCKS = 2 | |
| UNET_PARAMS_CONTEXT_DIM = 768 | |
| UNET_PARAMS_NUM_HEADS = 8 | |
| # UNET_PARAMS_USE_LINEAR_PROJECTION = False | |
| VAE_PARAMS_Z_CHANNELS = 4 | |
| VAE_PARAMS_RESOLUTION = 256 | |
| VAE_PARAMS_IN_CHANNELS = 3 | |
| VAE_PARAMS_OUT_CH = 3 | |
| VAE_PARAMS_CH = 128 | |
| VAE_PARAMS_CH_MULT = [1, 2, 4, 4] | |
| VAE_PARAMS_NUM_RES_BLOCKS = 2 | |
| # V2 | |
| V2_UNET_PARAMS_ATTENTION_HEAD_DIM = [5, 10, 20, 20] | |
| V2_UNET_PARAMS_CONTEXT_DIM = 1024 | |
| # V2_UNET_PARAMS_USE_LINEAR_PROJECTION = True | |
| def shave_segments(path, n_shave_prefix_segments=1): | |
| """ | |
| Removes segments. Positive values shave the first segments, negative shave the last segments. | |
| """ | |
| if n_shave_prefix_segments >= 0: | |
| return ".".join(path.split(".")[n_shave_prefix_segments:]) | |
| else: | |
| return ".".join(path.split(".")[:n_shave_prefix_segments]) | |
| def renew_resnet_paths(old_list, n_shave_prefix_segments=0): | |
| """ | |
| Updates paths inside resnets to the new naming scheme (local renaming) | |
| """ | |
| mapping = [] | |
| for old_item in old_list: | |
| new_item = old_item.replace("in_layers.0", "norm1") | |
| new_item = new_item.replace("in_layers.2", "conv1") | |
| new_item = new_item.replace("out_layers.0", "norm2") | |
| new_item = new_item.replace("out_layers.3", "conv2") | |
| new_item = new_item.replace("emb_layers.1", "time_emb_proj") | |
| new_item = new_item.replace("skip_connection", "conv_shortcut") | |
| new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
| mapping.append({"old": old_item, "new": new_item}) | |
| return mapping | |
| def renew_attention_paths(old_list, n_shave_prefix_segments=0): | |
| """ | |
| Updates paths inside attentions to the new naming scheme (local renaming) | |
| """ | |
| mapping = [] | |
| for old_item in old_list: | |
| new_item = old_item | |
| mapping.append({"old": old_item, "new": new_item}) | |
| return mapping | |
| def assign_to_checkpoint( | |
| paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None | |
| ): | |
| """ | |
| This does the final conversion step: take locally converted weights and apply a global renaming | |
| to them. It splits attention layers, and takes into account additional replacements | |
| that may arise. | |
| Assigns the weights to the new checkpoint. | |
| """ | |
| assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." | |
| # Splits the attention layers into three variables. | |
| if attention_paths_to_split is not None: | |
| for path, path_map in attention_paths_to_split.items(): | |
| old_tensor = old_checkpoint[path] | |
| channels = old_tensor.shape[0] // 3 | |
| target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) | |
| num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 | |
| old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) | |
| query, key, value = old_tensor.split(channels // num_heads, dim=1) | |
| checkpoint[path_map["query"]] = query.reshape(target_shape) | |
| checkpoint[path_map["key"]] = key.reshape(target_shape) | |
| checkpoint[path_map["value"]] = value.reshape(target_shape) | |
| for path in paths: | |
| new_path = path["new"] | |
| # These have already been assigned | |
| if attention_paths_to_split is not None and new_path in attention_paths_to_split: | |
| continue | |
| # Global renaming happens here | |
| new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") | |
| new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") | |
| new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") | |
| if additional_replacements is not None: | |
| for replacement in additional_replacements: | |
| new_path = new_path.replace(replacement["old"], replacement["new"]) | |
| # proj_attn.weight has to be converted from conv 1D to linear | |
| if "proj_attn.weight" in new_path: | |
| checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] | |
| else: | |
| checkpoint[new_path] = old_checkpoint[path["old"]] | |
| def linear_transformer_to_conv(checkpoint): | |
| keys = list(checkpoint.keys()) | |
| tf_keys = ["proj_in.weight", "proj_out.weight"] | |
| for key in keys: | |
| if ".".join(key.split(".")[-2:]) in tf_keys: | |
| if checkpoint[key].ndim == 2: | |
| checkpoint[key] = checkpoint[key].unsqueeze(2).unsqueeze(2) | |
| def conv_transformer_to_linear(checkpoint): | |
| keys = list(checkpoint.keys()) | |
| tf_keys = ["proj_in.weight", "proj_out.weight"] | |
| for key in keys: | |
| if ".".join(key.split(".")[-2:]) in tf_keys: | |
| if checkpoint[key].ndim > 2: | |
| checkpoint[key] = checkpoint[key][:, :, 0, 0] | |
| def create_unet_diffusers_config(v2, use_linear_projection_in_v2=False): | |
| """ | |
| Creates a config for the diffusers based on the config of the LDM model. | |
| """ | |
| # unet_params = original_config.model.params.unet_config.params | |
| block_out_channels = [UNET_PARAMS_MODEL_CHANNELS * mult for mult in UNET_PARAMS_CHANNEL_MULT] | |
| down_block_types = [] | |
| resolution = 1 | |
| for i in range(len(block_out_channels)): | |
| block_type = "CrossAttnDownBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "DownBlock2D" | |
| down_block_types.append(block_type) | |
| if i != len(block_out_channels) - 1: | |
| resolution *= 2 | |
| up_block_types = [] | |
| for i in range(len(block_out_channels)): | |
| block_type = "CrossAttnUpBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "UpBlock2D" | |
| up_block_types.append(block_type) | |
| resolution //= 2 | |
| config = dict( | |
| sample_size=UNET_PARAMS_IMAGE_SIZE, | |
| in_channels=UNET_PARAMS_IN_CHANNELS, | |
| out_channels=UNET_PARAMS_OUT_CHANNELS, | |
| down_block_types=tuple(down_block_types), | |
| up_block_types=tuple(up_block_types), | |
| block_out_channels=tuple(block_out_channels), | |
| layers_per_block=UNET_PARAMS_NUM_RES_BLOCKS, | |
| cross_attention_dim=UNET_PARAMS_CONTEXT_DIM if not v2 else V2_UNET_PARAMS_CONTEXT_DIM, | |
| attention_head_dim=UNET_PARAMS_NUM_HEADS if not v2 else V2_UNET_PARAMS_ATTENTION_HEAD_DIM, | |
| # use_linear_projection=UNET_PARAMS_USE_LINEAR_PROJECTION if not v2 else V2_UNET_PARAMS_USE_LINEAR_PROJECTION, | |
| ) | |
| if v2 and use_linear_projection_in_v2: | |
| config["use_linear_projection"] = True | |
| return config | |
| def convert_ldm_unet_checkpoint(v2, checkpoint, config): | |
| """ | |
| Takes a state dict and a config, and returns a converted checkpoint. | |
| """ | |
| # extract state_dict for UNet | |
| unet_state_dict = {} | |
| unet_key = "model.diffusion_model." | |
| keys = list(checkpoint.keys()) | |
| for key in keys: | |
| if key.startswith(unet_key): | |
| unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key) | |
| new_checkpoint = {} | |
| new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"] | |
| new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"] | |
| new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"] | |
| new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"] | |
| new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] | |
| new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] | |
| new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] | |
| new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] | |
| new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] | |
| new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] | |
| # Retrieves the keys for the input blocks only | |
| num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) | |
| input_blocks = { | |
| layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}." in key] for layer_id in range(num_input_blocks) | |
| } | |
| # Retrieves the keys for the middle blocks only | |
| num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) | |
| middle_blocks = { | |
| layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}." in key] for layer_id in range(num_middle_blocks) | |
| } | |
| # Retrieves the keys for the output blocks only | |
| num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) | |
| output_blocks = { | |
| layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}." in key] for layer_id in range(num_output_blocks) | |
| } | |
| for i in range(1, num_input_blocks): | |
| block_id = (i - 1) // (config["layers_per_block"] + 1) | |
| layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) | |
| resnets = [key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key] | |
| attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] | |
| if f"input_blocks.{i}.0.op.weight" in unet_state_dict: | |
| new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( | |
| f"input_blocks.{i}.0.op.weight" | |
| ) | |
| new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(f"input_blocks.{i}.0.op.bias") | |
| paths = renew_resnet_paths(resnets) | |
| meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} | |
| assign_to_checkpoint(paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config) | |
| if len(attentions): | |
| paths = renew_attention_paths(attentions) | |
| meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"} | |
| assign_to_checkpoint(paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config) | |
| resnet_0 = middle_blocks[0] | |
| attentions = middle_blocks[1] | |
| resnet_1 = middle_blocks[2] | |
| resnet_0_paths = renew_resnet_paths(resnet_0) | |
| assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) | |
| resnet_1_paths = renew_resnet_paths(resnet_1) | |
| assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) | |
| attentions_paths = renew_attention_paths(attentions) | |
| meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} | |
| assign_to_checkpoint(attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config) | |
| for i in range(num_output_blocks): | |
| block_id = i // (config["layers_per_block"] + 1) | |
| layer_in_block_id = i % (config["layers_per_block"] + 1) | |
| output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] | |
| output_block_list = {} | |
| for layer in output_block_layers: | |
| layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) | |
| if layer_id in output_block_list: | |
| output_block_list[layer_id].append(layer_name) | |
| else: | |
| output_block_list[layer_id] = [layer_name] | |
| if len(output_block_list) > 1: | |
| resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] | |
| attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] | |
| resnet_0_paths = renew_resnet_paths(resnets) | |
| paths = renew_resnet_paths(resnets) | |
| meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} | |
| assign_to_checkpoint(paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config) | |
| # オリジナル: | |
| # if ["conv.weight", "conv.bias"] in output_block_list.values(): | |
| # index = list(output_block_list.values()).index(["conv.weight", "conv.bias"]) | |
| # biasとweightの順番に依存しないようにする:もっといいやり方がありそうだが | |
| for l in output_block_list.values(): | |
| l.sort() | |
| if ["conv.bias", "conv.weight"] in output_block_list.values(): | |
| index = list(output_block_list.values()).index(["conv.bias", "conv.weight"]) | |
| new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ | |
| f"output_blocks.{i}.{index}.conv.bias" | |
| ] | |
| new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ | |
| f"output_blocks.{i}.{index}.conv.weight" | |
| ] | |
| # Clear attentions as they have been attributed above. | |
| if len(attentions) == 2: | |
| attentions = [] | |
| if len(attentions): | |
| paths = renew_attention_paths(attentions) | |
| meta_path = { | |
| "old": f"output_blocks.{i}.1", | |
| "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", | |
| } | |
| assign_to_checkpoint(paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config) | |
| else: | |
| resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) | |
| for path in resnet_0_paths: | |
| old_path = ".".join(["output_blocks", str(i), path["old"]]) | |
| new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) | |
| new_checkpoint[new_path] = unet_state_dict[old_path] | |
| # SDのv2では1*1のconv2dがlinearに変わっている | |
| # 誤って Diffusers 側を conv2d のままにしてしまったので、変換必要 | |
| if v2 and not config.get('use_linear_projection', False): | |
| linear_transformer_to_conv(new_checkpoint) | |
| return new_checkpoint | |
| def convert_unet_state_dict_to_sd(unet_state_dict, v2=False): | |
| unet_conversion_map = [ | |
| # (stable-diffusion, HF Diffusers) | |
| ("time_embed.0.weight", "time_embedding.linear_1.weight"), | |
| ("time_embed.0.bias", "time_embedding.linear_1.bias"), | |
| ("time_embed.2.weight", "time_embedding.linear_2.weight"), | |
| ("time_embed.2.bias", "time_embedding.linear_2.bias"), | |
| ("input_blocks.0.0.weight", "conv_in.weight"), | |
| ("input_blocks.0.0.bias", "conv_in.bias"), | |
| ("out.0.weight", "conv_norm_out.weight"), | |
| ("out.0.bias", "conv_norm_out.bias"), | |
| ("out.2.weight", "conv_out.weight"), | |
| ("out.2.bias", "conv_out.bias"), | |
| ] | |
| unet_conversion_map_resnet = [ | |
| # (stable-diffusion, HF Diffusers) | |
| ("in_layers.0", "norm1"), | |
| ("in_layers.2", "conv1"), | |
| ("out_layers.0", "norm2"), | |
| ("out_layers.3", "conv2"), | |
| ("emb_layers.1", "time_emb_proj"), | |
| ("skip_connection", "conv_shortcut"), | |
| ] | |
| unet_conversion_map_layer = [] | |
| for i in range(4): | |
| # loop over downblocks/upblocks | |
| for j in range(2): | |
| # loop over resnets/attentions for downblocks | |
| hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." | |
| sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0." | |
| unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) | |
| if i < 3: | |
| # no attention layers in down_blocks.3 | |
| hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}." | |
| sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1." | |
| unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) | |
| for j in range(3): | |
| # loop over resnets/attentions for upblocks | |
| hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}." | |
| sd_up_res_prefix = f"output_blocks.{3*i + j}.0." | |
| unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) | |
| if i > 0: | |
| # no attention layers in up_blocks.0 | |
| hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}." | |
| sd_up_atn_prefix = f"output_blocks.{3*i + j}.1." | |
| unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) | |
| if i < 3: | |
| # no downsample in down_blocks.3 | |
| hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv." | |
| sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op." | |
| unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) | |
| # no upsample in up_blocks.3 | |
| hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." | |
| sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}." | |
| unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) | |
| hf_mid_atn_prefix = "mid_block.attentions.0." | |
| sd_mid_atn_prefix = "middle_block.1." | |
| unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) | |
| for j in range(2): | |
| hf_mid_res_prefix = f"mid_block.resnets.{j}." | |
| sd_mid_res_prefix = f"middle_block.{2*j}." | |
| unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) | |
| # buyer beware: this is a *brittle* function, | |
| # and correct output requires that all of these pieces interact in | |
| # the exact order in which I have arranged them. | |
| mapping = {k: k for k in unet_state_dict.keys()} | |
| for sd_name, hf_name in unet_conversion_map: | |
| mapping[hf_name] = sd_name | |
| for k, v in mapping.items(): | |
| if "resnets" in k: | |
| for sd_part, hf_part in unet_conversion_map_resnet: | |
| v = v.replace(hf_part, sd_part) | |
| mapping[k] = v | |
| for k, v in mapping.items(): | |
| for sd_part, hf_part in unet_conversion_map_layer: | |
| v = v.replace(hf_part, sd_part) | |
| mapping[k] = v | |
| new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()} | |
| if v2: | |
| conv_transformer_to_linear(new_state_dict) | |
| return new_state_dict | |
| def get_diffusers_unet(unet=None, state_dict=None, v2=False): | |
| unet_config = create_unet_diffusers_config(v2, use_linear_projection_in_v2=False) | |
| if unet is None: | |
| unet = UNet2DConditionModel(**unet_config).to("cpu") | |
| if state_dict: | |
| converted_unet_checkpoint = convert_ldm_unet_checkpoint(v2, state_dict, unet_config) | |
| info = unet.load_state_dict(converted_unet_checkpoint) | |
| print("loading diffusers u-net:", info) | |
| return unet | |