File size: 4,085 Bytes
9b5b26a
 
 
 
c19d193
6aae614
8fe992b
9b5b26a
 
4132d6a
 
 
 
 
 
 
 
 
 
9b5b26a
b8e258e
 
2d14636
b8e258e
 
 
 
 
 
 
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
 
c60d75d
 
c0bcdef
c60d75d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aae614
ae7a494
 
 
 
e121372
bf6d34c
 
3349efe
 
fe328e0
13d500a
8c01ffb
 
9b5b26a
 
8c01ffb
861422e
 
9b5b26a
8c01ffb
8fe992b
4132d6a
8c01ffb
 
 
 
 
 
861422e
8fe992b
 
9b5b26a
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool

from Gradio_UI import GradioUI

# # Below is an example of a tool that does nothing. Amaze us with your creativity !
# @tool
# def find_product(num1:int, num2:int)-> int: #it's import to specify the return type
#     #Keep this format for the description / args / args description but feel free to modify the tool
#     """A tool that multiplies num1 and num2
#     Args:
#         num1: the first number
#         num2: the second number
#     """
#     return num1*num2


@tool
def greet(name: str)-> str: #it's import to specify the return type
    #Keep this format for the description / args / args description but feel free to modify the tool
    """A tool that greets user when the name is specified
    Args:
        name: a string representing name of the user
    """
    return f"Hello {name}, Have a nice day!!"

@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"



@tool
def get_latest_ai_agent_arxiv_papers(num_papers:int = 5) -> list:
    """
    Searches arXiv for the latest research papers on AI agents and retrieves
    the specified number of results.

    Args:
        num_papers: The number of papers to retrieve (default: 5).

    Returns:
        A list of dictionaries, where each dictionary represents a paper and
        contains its title, authors, and URL. Returns an empty list if any errors occur.
        Prints informative messages to the console during the search.
    """
    import arxiv
    
    try:
        search = arxiv.Search(
            query="AI agents",  # Your search term
            max_results=num_papers,
            sort_by=arxiv.SortCriterion.SubmittedDate # Sort by submission date for latest
        )

        papers = []
        for result in search.results():
            paper_info = {
                "title": result.title,
                "authors": ", ".join([author.name for author in result.authors]), # Nicer author format
                "url": result.pdf_url,
                "date": result.published.date(), # Get the date part of the datetime object
                "abstract": result.summary
            }
            papers.append(paper_info)
        return papers

    except Exception as e:
        print(f"An error occurred during the arXiv search: {e}")
        return []
        
final_answer = FinalAnswerTool()

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 

model = HfApiModel(
max_tokens=2096,
temperature=0.5,
#model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud',
custom_role_conversions=None,
)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[final_answer,greet,get_latest_ai_agent_arxiv_papers], ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent).launch()