Spaces:
Sleeping
Sleeping
| # import gradio as gr | |
| # def greet(name): | |
| # return "Hello " + name + "!!" | |
| # import torch | |
| # from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig | |
| # from peft import PeftModel, PeftConfig | |
| # # class InferenceFineTunning: | |
| # # def __init__(self, model_path): | |
| # # peft_model_id = f"hyang0503/{model_path}" | |
| # # config = PeftConfig.from_pretrained(peft_model_id) | |
| # # bnb_config = BitsAndBytesConfig( | |
| # # load_in_4bit=True, | |
| # # bnb_4bit_use_double_quant=True, | |
| # # bnb_4bit_quant_type="nf4", | |
| # # bnb_4bit_compute_dtype=torch.bfloat16 | |
| # # ) | |
| # # self.model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=bnb_config, device_map="auto") | |
| # # self.model = PeftModel.from_pretrained(self.model, peft_model_id) | |
| # # # self.tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) | |
| # # self.tokenizer = AutoTokenizer.from_pretrained(peft_model_id) | |
| # # self.tokenizer.pad_token = self.tokenizer.eos_token | |
| # # self.model.eval() | |
| # # def generate(self, q): # 실습 노트북과 내용 다름 | |
| # # outputs = self.model.generate( | |
| # # **self.tokenizer( | |
| # # f"### 질문: {q}\n\n### 답변:", | |
| # # return_tensors='pt', | |
| # # return_token_type_ids=False | |
| # # ).to("cuda"), | |
| # # max_new_tokens=256, | |
| # # early_stopping=True, | |
| # # do_sample=True, | |
| # # eos_token_id=2, | |
| # # ) | |
| # # print(self.tokenizer.decode(outputs[0])) | |
| # # ifg = InferenceFineTunning("qlora-koalpaca") | |
| # # iface = gr.Interface(fn=ifg.generate, inputs="text", outputs="text") | |
| # iface = gr.Interface(fn=greet, inputs="text", outputs="text") | |
| # iface.launch() | |
| import torch | |
| import gradio as gr | |
| from peft import PeftModel, PeftConfig | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
| peft_model_id = "hyang0503/qlora-koalpaca" | |
| config = PeftConfig.from_pretrained(peft_model_id) | |
| model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path) | |
| model = PeftModel.from_pretrained(model, peft_model_id).to(device) | |
| tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) | |
| def generate(q): | |
| inputs = tokenizer(f"### 질문: {q}\n\n### 답변:", return_tensors='pt', return_token_type_ids=False) | |
| outputs = model.generate( | |
| **{k: v.to(device) for k, v in inputs.items()}, | |
| max_new_tokens=256, | |
| do_sample=True, | |
| eos_token_id=2, | |
| ) | |
| result = tokenizer.decode(outputs[0]) | |
| answer_idx = result.find("### 답변:") | |
| answer = result[answer_idx + 7:].strip() | |
| return answer | |
| gr.Interface(generate, "text", "text").launch(share=True) |