File size: 13,960 Bytes
439e1dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
#!/usr/bin/env python3
"""
Model-based Processing Pipeline for News Dashboard
Handles summarization and translation using Hugging Face transformers
"""

import logging
import torch
from typing import List, Dict, Any, Optional
from transformers import (
    AutoTokenizer, 
    AutoModelForSeq2SeqLM,
    pipeline,
    BartForConditionalGeneration,
    BartTokenizer
)
import warnings
warnings.filterwarnings("ignore")

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class ModelProcessor:
    """
    Model-based processing for summarization and translation
    """
    
    def __init__(self, device: str = "auto"):
        """
        Initialize the model processor
        
        Args:
            device: Device to run models on ("auto", "cpu", "cuda")
        """
        self.device = self._get_device(device)
        self.summarization_model = None
        self.summarization_tokenizer = None
        self.translation_model = None
        self.translation_tokenizer = None
        self.models_loaded = False
        
        logger.info(f"ModelProcessor initialized on device: {self.device}")
    
    def _get_device(self, device: str) -> str:
        """
        Determine the best device to use
        
        Args:
            device: Requested device
            
        Returns:
            Device string
        """
        if device == "auto":
            if torch.cuda.is_available():
                return "cuda"
            elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
                return "mps"  # Apple Silicon
            else:
                return "cpu"
        return device
    
    def load_models(self) -> bool:
        """
        Load all required models
        
        Returns:
            True if all models loaded successfully, False otherwise
        """
        try:
            logger.info("Loading summarization model...")
            self._load_summarization_model()
            
            logger.info("Loading translation model...")
            self._load_translation_model()
            
            self.models_loaded = True
            logger.info("All models loaded successfully!")
            return True
            
        except Exception as e:
            logger.error(f"Error loading models: {str(e)}")
            return False
    
    def _load_summarization_model(self):
        """
        Load the summarization model and tokenizer
        """
        try:
            # Use distilbart for good balance of quality and speed
            model_name = "sshleifer/distilbart-cnn-12-6"
            
            self.summarization_tokenizer = AutoTokenizer.from_pretrained(model_name)
            self.summarization_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
            
            # Move to device
            self.summarization_model.to(self.device)
            self.summarization_model.eval()
            
            logger.info(f"Summarization model loaded: {model_name}")
            
        except Exception as e:
            logger.error(f"Error loading summarization model: {str(e)}")
            raise
    
    def _load_translation_model(self):
        """
        Load the translation model and tokenizer
        """
        try:
            # Use Helsinki-NLP English-Somali model
            model_name = "Helsinki-NLP/opus-mt-synthetic-en-so"
            
            self.translation_tokenizer = AutoTokenizer.from_pretrained(model_name)
            self.translation_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
            
            # Move to device
            self.translation_model.to(self.device)
            self.translation_model.eval()
            
            logger.info(f"Translation model loaded: {model_name}")
            
        except Exception as e:
            logger.error(f"Error loading translation model: {str(e)}")
            raise
    
    def process_content(self, content: str, max_length: int = 150, min_length: int = 30) -> Dict[str, Any]:
        """
        Process content through summarization and translation
        
        Args:
            content: Text content to process
            max_length: Maximum length for summary
            min_length: Minimum length for summary
            
        Returns:
            Dictionary containing processed results
        """
        if not self.models_loaded:
            logger.error("Models not loaded. Call load_models() first.")
            return {}
        
        if not content or len(content.strip()) < 50:
            logger.warning("Content too short for processing")
            return {
                'summary': '',
                'summary_somali': '',
                'translation': '',
                'bullet_points': [],
                'bullet_points_somali': [],
                'processing_success': False,
                'error': 'Content too short'
            }
        
        try:
            # Summarize content
            summary = self._summarize_content(content, max_length, min_length)
            
            # Create bullet points from summary
            bullet_points = self._create_bullet_points(summary)
            
            # Translate to Somali
            summary_somali = self._translate_to_somali(summary)
            content_somali = self._translate_to_somali(content)
            bullet_points_somali = [self._translate_to_somali(point) for point in bullet_points]
            
            return {
                'summary': summary,
                'summary_somali': summary_somali,
                'translation': content_somali,
                'bullet_points': bullet_points,
                'bullet_points_somali': bullet_points_somali,
                'processing_success': True,
                'error': None
            }
            
        except Exception as e:
            logger.error(f"Error processing content: {str(e)}")
            return {
                'summary': '',
                'summary_somali': '',
                'translation': '',
                'bullet_points': [],
                'bullet_points_somali': [],
                'processing_success': False,
                'error': str(e)
            }
    
    def _summarize_content(self, content: str, max_length: int, min_length: int) -> str:
        """
        Summarize content using the loaded model
        
        Args:
            content: Text to summarize
            max_length: Maximum summary length
            min_length: Minimum summary length
            
        Returns:
            Summarized text
        """
        try:
            # Tokenize input
            inputs = self.summarization_tokenizer(
                content,
                max_length=1024,  # Model's max input length
                truncation=True,
                return_tensors="pt"
            ).to(self.device)
            
            # Generate summary
            with torch.no_grad():
                summary_ids = self.summarization_model.generate(
                    inputs.input_ids,
                    max_length=max_length,
                    min_length=min_length,
                    length_penalty=2.0,
                    num_beams=4,
                    early_stopping=True
                )
            
            # Decode summary
            summary = self.summarization_tokenizer.decode(
                summary_ids[0], 
                skip_special_tokens=True
            )
            
            return summary.strip()
            
        except Exception as e:
            logger.error(f"Error in summarization: {str(e)}")
            return ""
    
    def _translate_to_somali(self, text: str) -> str:
        """
        Translate text to Somali using the loaded model
        
        Args:
            text: Text to translate
            
        Returns:
            Translated text
        """
        if not text or len(text.strip()) < 5:
            return ""
        
        try:
            # Tokenize input
            inputs = self.translation_tokenizer(
                text,
                max_length=512,  # Model's max input length
                truncation=True,
                return_tensors="pt"
            ).to(self.device)
            
            # Generate translation
            with torch.no_grad():
                translated_ids = self.translation_model.generate(
                    inputs.input_ids,
                    max_length=512,
                    num_beams=4,
                    early_stopping=True
                )
            
            # Decode translation
            translation = self.translation_tokenizer.decode(
                translated_ids[0], 
                skip_special_tokens=True
            )
            
            return translation.strip()
            
        except Exception as e:
            logger.error(f"Error in translation: {str(e)}")
            return text  # Return original text if translation fails
    
    def _create_bullet_points(self, summary: str) -> List[str]:
        """
        Convert summary into bullet points
        
        Args:
            summary: Summarized text
            
        Returns:
            List of bullet points
        """
        if not summary:
            return []
        
        # Split by sentences and create bullet points
        sentences = [s.strip() for s in summary.split('.') if s.strip()]
        
        # Limit to 5 bullet points max
        bullet_points = []
        for i, sentence in enumerate(sentences[:5]):
            if sentence:
                # Clean up the sentence
                sentence = sentence.strip()
                if not sentence.endswith('.'):
                    sentence += '.'
                bullet_points.append(sentence)
        
        return bullet_points
    
    def process_batch(self, data_list: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        """
        Process a batch of data items
        
        Args:
            data_list: List of data items to process
            
        Returns:
            List of processed data items
        """
        if not self.models_loaded:
            logger.error("Models not loaded. Call load_models() first.")
            return data_list
        
        processed_data = []
        
        for i, item in enumerate(data_list):
            logger.info(f"Processing item {i+1}/{len(data_list)}")
            
            # Get content from the item
            content = item.get('content', {})
            if isinstance(content, dict):
                text_content = content.get('cleaned_text', '')
            else:
                text_content = str(content)
            
            # Process the content
            model_results = self.process_content(text_content)
            
            # Add model results to the item
            item['model_processing'] = model_results
            
            # Update content structure with model outputs
            if isinstance(content, dict):
                content['model_summary'] = model_results['summary']
                content['model_summary_somali'] = model_results['summary_somali']
                content['model_translation'] = model_results['translation']
                content['bullet_points'] = model_results['bullet_points']
                content['bullet_points_somali'] = model_results['bullet_points_somali']
            
            processed_data.append(item)
        
        logger.info(f"Batch processing completed: {len(processed_data)} items processed")
        return processed_data
    
    def get_model_info(self) -> Dict[str, Any]:
        """
        Get information about loaded models
        
        Returns:
            Dictionary with model information
        """
        return {
            'models_loaded': self.models_loaded,
            'device': self.device,
            'summarization_model': 'distilbart-cnn-12-6' if self.summarization_model else None,
            'translation_model': 'Helsinki-NLP/opus-mt-synthetic-en-so' if self.translation_model else None,
            'cuda_available': torch.cuda.is_available(),
            'mps_available': hasattr(torch.backends, 'mps') and torch.backends.mps.is_available()
        }


def process_with_models(data_list: List[Dict[str, Any]], device: str = "auto") -> List[Dict[str, Any]]:
    """
    Convenience function to process data with models
    
    Args:
        data_list: List of data items to process
        device: Device to run models on
        
    Returns:
        List of processed data items
    """
    processor = ModelProcessor(device=device)
    
    if not processor.load_models():
        logger.error("Failed to load models")
        return data_list
    
    return processor.process_batch(data_list)


if __name__ == "__main__":
    # Example usage
    sample_data = [
        {
            'id': 'test1',
            'content': {
                'cleaned_text': 'This is a sample article about water management in Somalia. The article discusses the challenges of water scarcity and the need for sustainable water management practices. It also covers the role of international organizations in supporting water infrastructure development.'
            },
            'source_metadata': {
                'title': 'Water Management in Somalia',
                'url': 'https://example.com'
            }
        }
    ]
    
    # Process with models
    processed = process_with_models(sample_data)
    
    # Print results (without full content)
    for item in processed:
        print(f"Original: (text length: {len(item['content']['cleaned_text'])} chars)")
        print(f"Summary: {item['model_processing']['summary']}")
        print(f"Bullet Points: {item['model_processing']['bullet_points']}")
        print(f"Somali Translation: {item['model_processing']['summary_somali']}")
        print("-" * 50)