Spaces:
Running
Running
File size: 2,625 Bytes
b9cf8c8 13a06cd b9cf8c8 13a06cd b9cf8c8 309f2b5 b9cf8c8 13a06cd b9cf8c8 13a06cd b9cf8c8 13a06cd b9cf8c8 13a06cd b9cf8c8 13a06cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
title: Open Asr Leaderboard CL
emoji: π₯
colorFrom: green
colorTo: indigo
sdk: gradio
app_file: app.py
pinned: true
license: apache-2.0
short_description: Open ASR Leaderboard for Chilean Spanish
sdk_version: 4.44.0
tags:
- leaderboard
---
# Chilean Spanish ASR Leaderboard
> **Simple Gradio-based leaderboard displaying ASR evaluation results for Chilean Spanish models.**
## Quick Start
This is a simplified version that displays results from a CSV file with two tabs:
- **π
Chilean Spanish ASR Leaderboard**: Shows model rankings based on WER and RTFx metrics
- **π About**: Detailed information about the evaluation methodology and datasets
### Running the Leaderboard
```bash
# Clone the repository
git clone https://github.com/aastroza/open_asr_leaderboard_cl.git
cd open_asr_leaderboard_cl
# Install dependencies
pip install gradio pandas
# Run the application
python app.py
```
The application will load results from `results.csv` and display them in a simple, clean interface.
### Results Format
The `results.csv` file should contain the following columns:
- `model_id`: The model identifier (e.g., "openai/whisper-large-v3")
- `wer`: Word Error Rate (lower is better)
- `rtfx`: Real-Time Factor (higher is better)
- Additional metadata columns (dataset, num_samples, etc.)
### Configuration
- **Title and Content**: Edit `src/about.py` to modify the title, introduction text, and about section
- **Styling**: Customize appearance in `src/display/css_html_js.py`
- **Data Processing**: Modify the `load_results()` function in `app.py` to change how results are aggregated and displayed
## About the Evaluation
This leaderboard evaluates ASR models on Chilean Spanish using three datasets:
- **Common Voice** (Chilean Spanish subset)
- **Google Chilean Spanish**
- **Datarisas**
Models are ranked by average Word Error Rate (WER) across all datasets, with Real-Time Factor (RTFx) as a secondary metric for inference speed.
## Models Evaluated
- openai/whisper-large-v3
- openai/whisper-large-v3-turbo
- openai/whisper-small
- rcastrovexler/whisper-small-es-cl (Chilean Spanish fine-tuned)
- nvidia/canary-1b-v2
- nvidia/parakeet-tdt-0.6b-v3
- microsoft/Phi-4-multimodal-instruct
- mistralai/Voxtral-Mini-3B-2507
- elevenlabs/scribe_v1
For detailed methodology and complete evaluation framework, see the Modal-based evaluation code in the original repository.
## Citation
```bibtex
@misc{astroza2024chilean,
title={Chilean Spanish ASR Test Dataset},
author={Alonso Astroza},
year={2025},
howpublished={\url{https://huggingface.co/datasets/astroza/es-cl-asr-test-only}}
}
``` |