Spaces:
Runtime error
Runtime error
| from diffusers import StableDiffusionPipeline | |
| import torch | |
| import torch.nn as nn | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| from typing import Any, Callable, Dict, List, Optional, Union | |
| from diffusers.models.unet_2d_condition import UNet2DConditionModel | |
| from diffusers import DDIMScheduler | |
| import gc | |
| from PIL import Image | |
| class MyUNet2DConditionModel(UNet2DConditionModel): | |
| def forward( | |
| self, | |
| sample: torch.FloatTensor, | |
| timestep: Union[torch.Tensor, float, int], | |
| up_ft_indices, | |
| encoder_hidden_states: torch.Tensor, | |
| class_labels: Optional[torch.Tensor] = None, | |
| timestep_cond: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| output_eps=False): | |
| r""" | |
| Args: | |
| sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor | |
| timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps | |
| encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). | |
| """ | |
| # By default samples have to be AT least a multiple of the overall upsampling factor. | |
| # The overall upsampling factor is equal to 2 ** (# num of upsampling layears). | |
| # However, the upsampling interpolation output size can be forced to fit any upsampling size | |
| # on the fly if necessary. | |
| default_overall_up_factor = 2**self.num_upsamplers | |
| # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` | |
| forward_upsample_size = False | |
| upsample_size = None | |
| if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): | |
| # logger.info("Forward upsample size to force interpolation output size.") | |
| forward_upsample_size = True | |
| # prepare attention_mask | |
| if attention_mask is not None: | |
| attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
| attention_mask = attention_mask.unsqueeze(1) | |
| # 0. center input if necessary | |
| if self.config.center_input_sample: | |
| sample = 2 * sample - 1.0 | |
| # 1. time | |
| timesteps = timestep | |
| if not torch.is_tensor(timesteps): | |
| # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
| # This would be a good case for the `match` statement (Python 3.10+) | |
| is_mps = sample.device.type == "mps" | |
| if isinstance(timestep, float): | |
| dtype = torch.float32 if is_mps else torch.float64 | |
| else: | |
| dtype = torch.int32 if is_mps else torch.int64 | |
| timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
| elif len(timesteps.shape) == 0: | |
| timesteps = timesteps[None].to(sample.device) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timesteps = timesteps.expand(sample.shape[0]) | |
| t_emb = self.time_proj(timesteps) | |
| # timesteps does not contain any weights and will always return f32 tensors | |
| # but time_embedding might actually be running in fp16. so we need to cast here. | |
| # there might be better ways to encapsulate this. | |
| t_emb = t_emb.to(dtype=self.dtype) | |
| emb = self.time_embedding(t_emb, timestep_cond) | |
| if self.class_embedding is not None: | |
| if class_labels is None: | |
| raise ValueError("class_labels should be provided when num_class_embeds > 0") | |
| if self.config.class_embed_type == "timestep": | |
| class_labels = self.time_proj(class_labels) | |
| class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) | |
| emb = emb + class_emb | |
| # 2. pre-process | |
| sample = self.conv_in(sample) | |
| # 3. down | |
| down_block_res_samples = (sample,) | |
| for downsample_block in self.down_blocks: | |
| if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
| sample, res_samples = downsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ) | |
| else: | |
| sample, res_samples = downsample_block(hidden_states=sample, temb=emb) | |
| down_block_res_samples += res_samples | |
| # 4. mid | |
| if self.mid_block is not None: | |
| sample = self.mid_block( | |
| sample, | |
| emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ) | |
| # 5. up | |
| up_ft = {} | |
| for i, upsample_block in enumerate(self.up_blocks): | |
| if i > np.max(up_ft_indices): | |
| break | |
| is_final_block = i == len(self.up_blocks) - 1 | |
| res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
| down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
| # if we have not reached the final block and need to forward the | |
| # upsample size, we do it here | |
| if not is_final_block and forward_upsample_size: | |
| upsample_size = down_block_res_samples[-1].shape[2:] | |
| if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: | |
| sample = upsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| res_hidden_states_tuple=res_samples, | |
| encoder_hidden_states=encoder_hidden_states, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| upsample_size=upsample_size, | |
| attention_mask=attention_mask, | |
| ) | |
| else: | |
| sample = upsample_block( | |
| hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size | |
| ) | |
| if i in up_ft_indices: | |
| up_ft[i] = sample | |
| output = {} | |
| output['up_ft'] = up_ft | |
| if output_eps: | |
| sample = self.conv_norm_out(sample) | |
| sample = self.conv_act(sample) | |
| sample = self.conv_out(sample) | |
| output['eps'] = sample | |
| return output | |
| class OneStepSDPipeline(StableDiffusionPipeline): | |
| # @torch.no_grad() | |
| def __call__( | |
| self, | |
| t, | |
| up_ft_indices, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| img_tensor=None, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| latents=None | |
| ): | |
| device = self._execution_device | |
| if latents is None: | |
| latents = self.vae.encode(img_tensor).latent_dist.sample() * self.vae.config.scaling_factor | |
| t = torch.tensor(t.clone().detach(), dtype=torch.long, device=device) | |
| noise = torch.randn_like(latents).to(device) | |
| latents_noisy = self.scheduler.add_noise(latents, noise, t) | |
| unet_output = self.unet(latents_noisy, | |
| t, | |
| up_ft_indices, | |
| encoder_hidden_states=prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs) | |
| return unet_output | |
| class SDFeaturizer: | |
| def __init__(self, sd_id='ckpt/stable-diffusion-2-1-base'): | |
| unet = MyUNet2DConditionModel.from_pretrained(sd_id, subfolder="unet") | |
| onestep_pipe = OneStepSDPipeline.from_pretrained(sd_id, unet=unet, safety_checker=None) | |
| onestep_pipe.vae.decoder = None | |
| onestep_pipe.scheduler = DDIMScheduler.from_pretrained(sd_id, subfolder="scheduler") | |
| gc.collect() | |
| onestep_pipe = onestep_pipe.to("cuda") | |
| onestep_pipe.enable_attention_slicing() | |
| onestep_pipe.enable_xformers_memory_efficient_attention() | |
| self.pipe = onestep_pipe | |
| def forward(self, | |
| img_tensor, | |
| prompt, | |
| t=261, | |
| up_ft_index=1, | |
| ensemble_size=8): | |
| ''' | |
| Args: | |
| img_tensor: should be a single torch tensor in the shape of [1, C, H, W] or [C, H, W] | |
| prompt: the prompt to use, a string | |
| t: the time step to use, should be an int in the range of [0, 1000] | |
| up_ft_index: which upsampling block of the U-Net to extract feature, you can choose [0, 1, 2, 3] | |
| ensemble_size: the number of repeated images used in the batch to extract features | |
| Return: | |
| unet_ft: a torch tensor in the shape of [1, c, h, w] | |
| ''' | |
| img_tensor = img_tensor.repeat(ensemble_size, 1, 1, 1).cuda() # ensem, c, h, w | |
| prompt_embeds = self.pipe._encode_prompt( | |
| prompt=prompt, | |
| device='cuda', | |
| num_images_per_prompt=1, | |
| do_classifier_free_guidance=False) # [1, 77, dim] | |
| prompt_embeds = prompt_embeds.repeat(ensemble_size, 1, 1) | |
| unet_ft_all = self.pipe( | |
| img_tensor=img_tensor, | |
| t=t, | |
| up_ft_indices=[up_ft_index], | |
| prompt_embeds=prompt_embeds) | |
| unet_ft = unet_ft_all['up_ft'][up_ft_index] # ensem, c, h, w | |
| unet_ft = unet_ft.mean(0, keepdim=True) # 1,c,h,w | |
| return unet_ft | |