Spaces:
Running
Running
File size: 68,898 Bytes
24a5f16 f6b51b3 24a5f16 f6b51b3 24a5f16 dfa1e52 24a5f16 f6b51b3 dfa1e52 24a5f16 ed120b4 24a5f16 f6b51b3 24a5f16 f6b51b3 dfa1e52 f6b51b3 24a5f16 f6b51b3 24a5f16 f6b51b3 24a5f16 dfa1e52 24a5f16 f6b51b3 24a5f16 dfa1e52 24a5f16 ed120b4 f6b51b3 dfa1e52 ed120b4 f6b51b3 ed120b4 7206088 dbbe798 dfa1e52 ed120b4 f6b51b3 dfa1e52 f6b51b3 dfa1e52 24a5f16 f6b51b3 24a5f16 f6b51b3 7206088 f6b51b3 24a5f16 f6b51b3 24a5f16 f6b51b3 24a5f16 f6b51b3 24a5f16 f6b51b3 24a5f16 f6b51b3 24a5f16 f6b51b3 24a5f16 f6b51b3 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 f6b51b3 24a5f16 f6b51b3 24a5f16 f6b51b3 24a5f16 f6b51b3 24a5f16 dfa1e52 24a5f16 f6b51b3 24a5f16 f6b51b3 24a5f16 f6b51b3 24a5f16 f6b51b3 24a5f16 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 24a5f16 f6b51b3 dfa1e52 24a5f16 f6b51b3 24a5f16 f6b51b3 24a5f16 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 269e9b8 f6b51b3 dfa1e52 f6b51b3 24a5f16 dfa1e52 24a5f16 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 24a5f16 f6b51b3 24a5f16 f6b51b3 24a5f16 dfa1e52 fb92134 dfa1e52 fb92134 f6b51b3 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 f6b51b3 24a5f16 dfa1e52 24a5f16 f6b51b3 24a5f16 dfa1e52 f6b51b3 24a5f16 dfa1e52 f6b51b3 24a5f16 dfa1e52 f6b51b3 dfa1e52 24a5f16 dfa1e52 f6b51b3 dfa1e52 f6b51b3 24a5f16 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 f6b51b3 dfa1e52 24a5f16 dfa1e52 24a5f16 f6b51b3 24a5f16 dfa1e52 24a5f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 |
import os
import json
import math
import numpy as np
import pandas as pd
import gradio as gr
from huggingface_hub import HfApi, hf_hub_download
OWNER = "inceptionai"
ARAGEN_REQUESTS_REPO_ID = f"{OWNER}/aragen-requests-dataset"
HINDIGEN_REQUESTS_REPO_ID = f"{OWNER}/hindigen-requests-dataset"
IFEVAL_REQUESTS_REPO_ID = f"{OWNER}/arabicifeval-requests-dataset"
HEADER = """
<center>
<br></br>
<h1>Multilingual Leaderboards ๐</h1>
<h2>Generative Evaluation for Global South</h2>
<br></br>
</center>
"""
ABOUT_SECTION = """
## About
In our `12-24` release, we introduced the **AraGen Benchmark**, along with the **3C3H** evaluation measure (aka the 3C3H Score). You can find more details about AraGen and 3C3H [here](https://huggingface.co/blog/leaderboard-3c3h-aragen). The first versions of the benchmark, **AraGen-12-24** and **AraGen-03-25 (v2)**, are publicly available in the [`inceptionai/AraGen`](https://huggingface.co/datasets/inceptionai/AraGen) dataset. The current AraGen leaderboard in this Space is powered by **AraGen-v3**.
Building on that foundation, we extend our evaluation beyond Arabic, introducing **HindiGen**, a generative benchmark for Hindi that will follow the same release philosophy as AraGen. The current **HindiGen-v1** powers the HindiGen leaderboards here; a future **HindiGen-v2** release will be publicly shared along with the v1 dataset.
In this release, we present three main leaderboards:
**AraGen-v3:**
- The AraGen Benchmark is designed to evaluate and compare the performance of Chat/Instruct Arabic Large Language Models on a suite of generative tasks that are culturally relevant to the Arab region, history, politics, cuisine, and more. By leveraging **3C3H** as an evaluation metricโwhich assesses a model's output across six dimensions: Correctness, Completeness, Conciseness, Helpfulness, Honesty, and Harmlessnessโthe leaderboard offers a comprehensive and holistic evaluation of a modelโs chat capabilities and its ability to generate human-like and ethically responsible content.
**HindiGen-v1:**
- The HindiGen Benchmark evaluates Chat/Instruct LLMs on Hindi generative tasks such as question answering, grammar, and safety. It follows the same 3C3H evaluation methodology and bootstrapped confidence intervals, enabling statistically grounded comparisons between models on culturally and linguistically rich Hindi content.
**Instruction Following (IFEval โ Arabic & English):**
- We have established a robust leaderboard that benchmarks models on Arabic and English instruction following, offering an open and comparative performance landscape for the research community. Concurrently, we released the first publicly available Arabic [dataset](https://huggingface.co/datasets/inceptionai/Arabic_IFEval) aimed at evaluating LLMs' ability to follow instructions. The Arabic IFEval samples are meticulously curated to capture the languageโs unique nuancesโsuch as diacritization and distinctive phonetic featuresโoften overlooked in generic datasets. Our dedicated linguistic team generated original samples and adapted selections from the IFEval English dataset, ensuring that the material resonates with Arabic cultural contexts and meets the highest standards of authenticity and quality.
### Why Focus on Chat Models?
Our evaluations are conducted in a generative mode, meaning that we expect models to produce complete, context-rich responses rather than simply predicting the next token as base models do. This approach not only yields results that are more explainable and nuanced compared to logit-based measurements, but it also captures elements like creativity, coherence, and ethical considerationsโproviding deeper insights into overall model performance.
### Contact
For inquiries or assistance, please join the conversation on our [Discussions Tab](https://huggingface.co/spaces/inceptionai/Leaderboards/discussions) or reach out via [email](mailto:[email protected]).
"""
BOTTOM_LOGO = """<img src="https://huggingface.co/spaces/inceptionai/Arabic-Leaderboards/resolve/main/assets/pictures/03-25/arabic-leaderboards-colab-march-preview-free-3.png" style="width:50%;display:block;margin-left:auto;margin-right:auto;border-radius:15px;">"""
CITATION_BUTTON_TEXT = """
@misc{leaderboards,
author = {El Filali, Ali and Albarri, Sarah and Kamboj, Samta and Sengupta, Neha and Nakov, Preslav and Abouelseoud, Arwa},
title = {Multilingual Leaderboards: Generative Evaluation for Global South},
year = {2025},
publisher = {Inception},
howpublished = "url{https://huggingface.co/spaces/inceptionai/Leaderboards}"
}
"""
CITATION_BUTTON_LABEL = """
Copy the following snippet to cite the results from all Arabic Leaderboards in this Space.
"""
def extract_score_value(entry):
"""
Helper to extract (value, lower, upper) from both old v2 format (float)
and new v3/v1 formats (dict with "value"/"lower"/"upper").
All values are returned in [0, 1] space; caller can convert to percentages.
We use the "value" field as the point estimate.
"""
if entry is None:
return (math.nan, math.nan, math.nan)
# Old format: just a float
if isinstance(entry, (int, float)):
v = float(entry)
return (v, math.nan, math.nan)
# New format: dict with "value", "lower", "upper"
if isinstance(entry, dict):
v = float(entry.get("value", math.nan))
lower = entry.get("lower", math.nan)
upper = entry.get("upper", math.nan)
lower = float(lower) if isinstance(lower, (int, float)) else math.nan
upper = float(upper) if isinstance(upper, (int, float)) else math.nan
return (v, lower, upper)
return (math.nan, math.nan, math.nan)
def compute_leaderboard_3c3h(df_3c3h_base: pd.DataFrame) -> pd.DataFrame:
"""
Build the 3C3H leaderboard with:
- Rank (by 3C3H Score)
- Rank Spread (based on 3C3H Score CI)
- 95% CI (ยฑ) for 3C3H Score (only)
- Model Size Filter
All scores are in percentage space.
"""
df = df_3c3h_base.copy()
# Model size filter helper
max_model_size_value = 1000
df["Model Size Filter"] = df["Model Size"].replace(np.inf, max_model_size_value)
# Sort & rank by 3C3H Score (point estimate)
if "3C3H Score" in df.columns:
df = df.sort_values(by="3C3H Score", ascending=False)
df = df.reset_index(drop=True)
df.insert(0, "Rank", range(1, len(df) + 1))
# Rank Spread based on 3C3H Score CI
main_col = "3C3H Score"
lower_col = "3C3H Score Lower"
upper_col = "3C3H Score Upper"
# Effective lower/upper: if not present, fall back to point estimate
if lower_col in df.columns:
lower_eff = df[lower_col].copy()
else:
lower_eff = df[main_col].copy()
if upper_col in df.columns:
upper_eff = df[upper_col].copy()
else:
upper_eff = df[main_col].copy()
# order of base scenario: all models at their point estimates (value-based)
sort_desc = df.sort_values(by=main_col, ascending=False)
score_order = sort_desc[main_col].values # descending
def rank_position(x, order):
"""
Given a value x and a descending array 'order',
return the rank index where x would land
if all others stayed as in 'order'.
Rank = 1 + number of scores strictly greater than x.
"""
if np.isnan(x):
return math.nan
# Ignore NaNs in the score order
valid = order[~np.isnan(order)]
if valid.size == 0:
return math.nan
# 'valid' is descending; count how many scores are strictly greater than x
num_greater = np.sum(valid > x)
rank = num_greater + 1
# Clamp rank to [1, len(valid)] for numerical safety
if rank < 1:
rank = 1
elif rank > len(valid):
rank = len(valid)
return int(rank)
best_ranks = []
worst_ranks = []
for low, high in zip(lower_eff.values, upper_eff.values):
best = rank_position(high, score_order) # optimistic: use upper bound
worst = rank_position(low, score_order) # pessimistic: use lower bound
best_ranks.append(best)
worst_ranks.append(worst)
spread = []
for b, w in zip(best_ranks, worst_ranks):
if math.isnan(b) or math.isnan(w):
spread.append("-")
else:
spread.append(f"{int(b)} <--> {int(w)}")
df.insert(1, "Rank Spread", spread)
# 95% CI (ยฑ) for 3C3H Score only (in percentage space)
if lower_col in df.columns and upper_col in df.columns:
ci = (df[upper_col] - df[lower_col]) / 2.0
df["95% CI (ยฑ)"] = ci.round(4)
else:
df["95% CI (ยฑ)"] = np.nan
# Round score columns
score_columns_3c3h = [
"3C3H Score",
"Correctness",
"Completeness",
"Conciseness",
"Helpfulness",
"Honesty",
"Harmlessness",
]
for col in score_columns_3c3h:
if col in df.columns:
df[col] = df[col].round(4)
df["95% CI (ยฑ)"] = df["95% CI (ยฑ)"].round(4)
return df
def load_results(benchmark="aragen"):
"""
Loads results for the given benchmark.
benchmark:
- "aragen" -> uses aragen_v3_results.json (or v2 fallback)
- "hindigen" -> uses hindigen_v1_results.json
Supports:
- old v2 format (simple floats)
- new v3/v1 format (dict with value/lower/upper)
Returns:
df_3c3h : 3C3H leaderboard dataframe (with Rank, Rank Spread, 95% CI (ยฑ))
df_tasks : tasks leaderboard dataframe
task_columns: list of task score columns
"""
current_dir = os.path.dirname(os.path.abspath(__file__))
if benchmark == "hindigen":
results_file = os.path.join(current_dir, "assets", "results", "hindigen_v1_results.json")
else:
v3_file = os.path.join(current_dir, "assets", "results", "aragen_v3_results.json")
v2_file = os.path.join(current_dir, "assets", "results", "aragen_v2_results.json")
if os.path.exists(v3_file):
results_file = v3_file
else:
results_file = v2_file
with open(results_file, "r", encoding="utf-8") as f:
data = json.load(f)
# Filter out entries that only contain "_last_sync_timestamp"
filtered_data = []
for entry in data:
if len(entry.keys()) == 1 and "_last_sync_timestamp" in entry:
continue
filtered_data.append(entry)
data = filtered_data
data_3c3h = []
data_tasks = []
for model_data in data:
meta = model_data.get("Meta", {})
model_name = meta.get("Model Name", "UNK")
revision = meta.get("Revision", "UNK")
precision = meta.get("Precision", "UNK")
license_ = meta.get("License", "UNK")
params = meta.get("Params", "UNK")
# Parse model size
try:
model_size_numeric = float(params)
except Exception:
model_size_numeric = np.inf
# Find the key that holds the scores (e.g. "claude-3-7-sonnet-20250219 Scores", "claude-3.5-sonnet Scores")
scores_key = None
for k in model_data.keys():
if k.endswith("Scores"):
scores_key = k
break
scores_data = model_data.get(scores_key, {}) if scores_key else {}
scores_3c3h = scores_data.get("3C3H Scores", {})
scores_tasks = scores_data.get("Tasks Scores", {})
# --- 3C3H entry ---
entry3 = {
"Model Name": model_name,
"Revision": revision,
"License": license_,
"Precision": precision,
"Model Size": model_size_numeric,
}
for metric_name, metric_entry in scores_3c3h.items():
v, lower, upper = extract_score_value(metric_entry)
# Point estimate (percentage)
entry3[metric_name] = v * 100 if not math.isnan(v) else np.nan
# Only keep lower/upper for 3C3H Score (for CI & Rank Spread)
if metric_name == "3C3H Score":
entry3["3C3H Score Lower"] = (
lower * 100 if not math.isnan(lower) else np.nan
)
entry3["3C3H Score Upper"] = (
upper * 100 if not math.isnan(upper) else np.nan
)
data_3c3h.append(entry3)
# --- Tasks entry ---
entryt = {
"Model Name": model_name,
"Revision": revision,
"License": license_,
"Precision": precision,
"Model Size": model_size_numeric,
}
for task_name, task_entry in scores_tasks.items():
v, _, _ = extract_score_value(task_entry)
entryt[task_name] = v * 100 if not math.isnan(v) else np.nan
data_tasks.append(entryt)
df_3c3h_base = pd.DataFrame(data_3c3h)
df_tasks_base = pd.DataFrame(data_tasks)
# Build 3C3H leaderboard (rank, rank spread, CI, size filter)
df_3c3h = compute_leaderboard_3c3h(df_3c3h_base)
# Build tasks leaderboard (no weighted average, no rank spread, no CI)
if df_tasks_base.empty:
df_tasks = df_tasks_base.copy()
task_columns = []
else:
meta_cols_tasks = [
"Model Name",
"Revision",
"License",
"Precision",
"Model Size",
]
task_columns = [
col
for col in df_tasks_base.columns
if col not in meta_cols_tasks
]
df_tasks = df_tasks_base.copy()
# Round task scores
if task_columns:
df_tasks[task_columns] = df_tasks[task_columns].round(4)
# Model size filter
max_model_size_value = 1000
df_tasks["Model Size Filter"] = df_tasks["Model Size"].replace(
np.inf, max_model_size_value
)
# Sort & rank: based on the first task (typically Question Answering (QA))
if task_columns:
first_task = task_columns[0]
df_tasks = df_tasks.sort_values(by=first_task, ascending=False)
else:
df_tasks = df_tasks.sort_values(by="Model Name", ascending=True)
df_tasks = df_tasks.reset_index(drop=True)
df_tasks.insert(0, "Rank", range(1, len(df_tasks) + 1))
return df_3c3h, df_tasks, task_columns
def load_if_data():
"""
Loads the instruction-following data from ifeval_results.jsonl
and returns a dataframe with relevant columns,
converting decimal values to percentage format.
"""
current_dir = os.path.dirname(os.path.abspath(__file__))
results_file = os.path.join(current_dir, "assets", "results", "ifeval_results.jsonl")
data = []
with open(results_file, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if not line:
continue
data.append(json.loads(line))
df = pd.DataFrame(data)
# Convert numeric columns
numeric_cols = ["En Prompt-lvl", "En Instruction-lvl", "Ar Prompt-lvl", "Ar Instruction-lvl"]
for col in numeric_cols:
df[col] = pd.to_numeric(df[col], errors="coerce")
# Compute average accuracy for En and Ar
df["Average Accuracy (En)"] = (df["En Prompt-lvl"] + df["En Instruction-lvl"]) / 2
df["Average Accuracy (Ar)"] = (df["Ar Prompt-lvl"] + df["Ar Instruction-lvl"]) / 2
# Convert them to percentage format (e.g., 0.871 -> 87.1)
for col in numeric_cols:
df[col] = (df[col] * 100).round(1)
df["Average Accuracy (En)"] = (df["Average Accuracy (En)"] * 100).round(1)
df["Average Accuracy (Ar)"] = (df["Average Accuracy (Ar)"] * 100).round(1)
# Handle size as numeric
def parse_size(x):
try:
return float(x)
except:
return np.inf
df["Model Size"] = df["Size (B)"].apply(parse_size)
# Add a filter column for size
max_model_size_value = 1000
df["Model Size Filter"] = df["Model Size"].replace(np.inf, max_model_size_value)
# Sort by "Average Accuracy (Ar)" as an example
df = df.sort_values(by="Average Accuracy (Ar)", ascending=False)
df = df.reset_index(drop=True)
df.insert(0, "Rank", range(1, len(df) + 1))
return df
def submit_model(model_name, revision, precision, params, license, modality, leaderboards_selected):
"""
Submits a model to one or more leaderboards:
- AraGen -> inceptionai/aragen-requests-dataset
- HindiGen -> inceptionai/hindigen-requests-dataset
- IFEval -> inceptionai/arabicifeval-requests-dataset
User must choose at least one leaderboard.
"""
if not leaderboards_selected:
return "**Error:** You must choose at least one leaderboard (AraGen, HindiGen, and/or IFEval)."
# Normalize precision
if precision == "Missing":
precision_norm = None
else:
precision_norm = precision.strip().lower() if precision else None
repo_map = {
"AraGen": ARAGEN_REQUESTS_REPO_ID,
"HindiGen": HINDIGEN_REQUESTS_REPO_ID,
"IFEval": IFEVAL_REQUESTS_REPO_ID,
}
# Map leaderboards that use the 3C3H JSON result files (for dedup vs results)
results_benchmark_map = {
"AraGen": "aragen",
"HindiGen": "hindigen",
}
api = HfApi()
# Validate model exists on HuggingFace Hub once
try:
_ = api.model_info(model_name)
except Exception:
return f"**Error: Could not find model '{model_name}' on HuggingFace Hub. Please ensure the model name is correct and the model is public.**"
org_model = model_name.split("/")
if len(org_model) != 2:
return "**Please enter the full model name including the organization or username, e.g., 'inceptionai/jais-family-30b-8k'**"
org, model_id = org_model
hf_api_token = os.environ.get("HF_API_TOKEN", None)
# Dedup & upload per leaderboard
success_targets = []
skipped_targets = []
errors = []
for leaderboard in leaderboards_selected:
repo_id = repo_map.get(leaderboard)
if repo_id is None:
errors.append(f"- Unknown leaderboard: {leaderboard}")
continue
# Deduplicate against existing results (only for AraGen/HindiGen)
already_evaluated = False
if leaderboard in results_benchmark_map:
df_3c3h_lb, _, _ = load_results(results_benchmark_map[leaderboard])
if not df_3c3h_lb.empty:
existing_models_results = df_3c3h_lb[["Model Name", "Revision", "Precision"]]
model_exists_in_results = (
(existing_models_results["Model Name"] == model_name)
& (existing_models_results["Revision"] == revision)
& (existing_models_results["Precision"] == (precision_norm if precision_norm is not None else existing_models_results["Precision"]))
).any()
if model_exists_in_results:
skipped_targets.append(
f"- **{leaderboard}**: Model already appears in the leaderboard results."
)
already_evaluated = True
# Deduplicate against pending/finished requests in this repo
def load_req(status_folder):
return load_requests(repo_id, status_folder)
df_pending = load_req("pending")
df_finished = load_req("finished")
if not already_evaluated:
if not df_pending.empty:
existing_models_pending = df_pending[["model_name", "revision", "precision"]]
model_exists_in_pending = (
(existing_models_pending["model_name"] == model_name)
& (existing_models_pending["revision"] == revision)
& (existing_models_pending["precision"] == precision_norm)
).any()
if model_exists_in_pending:
skipped_targets.append(
f"- **{leaderboard}**: Model is already in pending evaluations."
)
already_evaluated = True
if not already_evaluated:
if not df_finished.empty:
existing_models_finished = df_finished[["model_name", "revision", "precision"]]
model_exists_in_finished = (
(existing_models_finished["model_name"] == model_name)
& (existing_models_finished["revision"] == revision)
& (existing_models_finished["precision"] == precision_norm)
).any()
if model_exists_in_finished:
skipped_targets.append(
f"- **{leaderboard}**: Model has already been evaluated (finished)."
)
already_evaluated = True
if already_evaluated:
continue
# Prepare submission JSON
status = "PENDING"
submission = {
"model_name": model_name,
"license": license,
"revision": revision,
"precision": precision_norm,
"params": params,
"status": status,
"modality": modality,
"leaderboard": leaderboard,
}
submission_json = json.dumps(submission, indent=2)
precision_str = precision_norm if precision_norm else "Missing"
file_path_in_repo = f"pending/{org}/{model_id}_eval_request_{revision}_{precision_str}.json"
try:
api.upload_file(
path_or_fileobj=submission_json.encode("utf-8"),
path_in_repo=file_path_in_repo,
repo_id=repo_id,
repo_type="dataset",
token=hf_api_token,
)
success_targets.append(leaderboard)
except Exception as e:
errors.append(f"- **{leaderboard}**: Error while submitting โ {str(e)}")
# Build user-facing message
messages = []
if success_targets:
messages.append(
f"โ
Model **'{model_name}'** has been submitted for evaluation to: "
+ ", ".join(f"**{lb}**" for lb in success_targets)
+ "."
)
if skipped_targets:
messages.append("โ ๏ธ Skipped submissions:\n" + "\n".join(skipped_targets))
if errors:
messages.append("โ Errors:\n" + "\n".join(errors))
if not messages:
return "**No submissions were made.** Please check if the model is already pending or evaluated."
return "\n\n".join(messages)
def load_requests(repo_id, status_folder):
"""
Loads request JSON files from a given dataset repo and status folder:
status_folder in {"pending", "finished", "failed"}
"""
api = HfApi()
requests_data = []
hf_api_token = os.environ.get("HF_API_TOKEN", None)
try:
files_info = api.list_repo_files(
repo_id=repo_id,
repo_type="dataset",
token=hf_api_token,
)
except Exception as e:
print(f"Error accessing dataset repository {repo_id}: {e}")
return pd.DataFrame()
files_in_folder = [
f for f in files_info if f.startswith(f"{status_folder}/") and f.endswith(".json")
]
for file_path in files_in_folder:
try:
local_file_path = hf_hub_download(
repo_id=repo_id,
filename=file_path,
repo_type="dataset",
token=hf_api_token,
)
with open(local_file_path, "r") as f:
request = json.load(f)
requests_data.append(request)
except Exception as e:
print(f"Error loading file {file_path}: {e}")
continue
df = pd.DataFrame(requests_data)
return df
# ---------- FILTER HELPERS (AraGen) ----------
def filter_df_3c3h(
search_query,
selected_cols,
precision_filters,
license_filters,
min_size,
max_size,
):
# AraGen 3C3H
df_3c3h, _, _ = load_results("aragen")
df_ = df_3c3h.copy()
# Sanity check on size range
if min_size > max_size:
min_size, max_size = max_size, min_size
# Text search
if search_query:
df_ = df_[df_["Model Name"].str.contains(search_query, case=False, na=False)]
# Precision filtering
if precision_filters:
include_missing = "Missing" in precision_filters
selected_precisions = [p for p in precision_filters if p != "Missing"]
if include_missing:
df_ = df_[
(df_["Precision"].isin(selected_precisions))
| (df_["Precision"] == "UNK")
| (df_["Precision"].isna())
]
else:
df_ = df_[df_["Precision"].isin(selected_precisions)]
# License filtering
if license_filters:
include_missing = "Missing" in license_filters
selected_licenses = [l for l in license_filters if l != "Missing"]
if include_missing:
df_ = df_[
(df_["License"].isin(selected_licenses))
| (df_["License"] == "UNK")
| (df_["License"].isna())
]
else:
df_ = df_[df_["License"].isin(selected_licenses)]
# Model size filter
df_ = df_[
(df_["Model Size Filter"] >= min_size) & (df_["Model Size Filter"] <= max_size)
]
# Keep global Rank / Rank Spread; just reset the index
df_ = df_.reset_index(drop=True)
# Column ordering
fixed_column_order = [
"Rank",
"Rank Spread",
"Model Name",
"3C3H Score",
"95% CI (ยฑ)",
"Correctness",
"Completeness",
"Conciseness",
"Helpfulness",
"Honesty",
"Harmlessness",
"Revision",
"License",
"Precision",
"Model Size",
]
selected_cols = [
col
for col in fixed_column_order
if col in selected_cols and col in df_.columns
]
return df_[selected_cols]
def filter_df_tasks(
search_query,
selected_cols,
precision_filters,
license_filters,
min_size,
max_size,
task_columns,
):
# AraGen tasks
_, df_tasks, _ = load_results("aragen")
df_ = df_tasks.copy()
if min_size > max_size:
min_size, max_size = max_size, min_size
if search_query:
df_ = df_[df_["Model Name"].str.contains(search_query, case=False, na=False)]
if precision_filters:
include_missing = "Missing" in precision_filters
selected_precisions = [p for p in precision_filters if p != "Missing"]
if include_missing:
df_ = df_[
(df_["Precision"].isin(selected_precisions))
| (df_["Precision"] == "UNK")
| (df_["Precision"].isna())
]
else:
df_ = df_[df_["Precision"].isin(selected_precisions)]
if license_filters:
include_missing = "Missing" in license_filters
selected_licenses = [l for l in license_filters if l != "Missing"]
if include_missing:
df_ = df_[
(df_["License"].isin(selected_licenses))
| (df_["License"] == "UNK")
| (df_["License"].isna())
]
else:
df_ = df_[df_["License"].isin(selected_licenses)]
df_ = df_[
(df_["Model Size Filter"] >= min_size) & (df_["Model Size Filter"] <= max_size)
]
# Re-rank within filtered subset using first task as sort key
if "Rank" in df_.columns:
df_ = df_.drop(columns=["Rank"])
if task_columns:
first_task = task_columns[0]
if first_task in df_.columns:
df_ = df_.sort_values(by=first_task, ascending=False)
else:
df_ = df_.sort_values(by="Model Name", ascending=True)
else:
df_ = df_.sort_values(by="Model Name", ascending=True)
df_ = df_.reset_index(drop=True)
df_.insert(0, "Rank", range(1, len(df_) + 1))
fixed_column_order = [
"Rank",
"Model Name",
"Question Answering (QA)",
"Orthographic and Grammatical Analysis",
"Safety",
"Reasoning",
"Revision",
"License",
"Precision",
"Model Size",
]
selected_cols = [
col for col in fixed_column_order if col in selected_cols and col in df_.columns
]
return df_[selected_cols]
# ---------- FILTER HELPERS (HindiGen) ----------
def filter_df_3c3h_hindigen(
search_query,
selected_cols,
precision_filters,
license_filters,
min_size,
max_size,
):
df_3c3h_hi, _, _ = load_results("hindigen")
df_ = df_3c3h_hi.copy()
if min_size > max_size:
min_size, max_size = max_size, min_size
if search_query:
df_ = df_[df_["Model Name"].str.contains(search_query, case=False, na=False)]
if precision_filters:
include_missing = "Missing" in precision_filters
selected_precisions = [p for p in precision_filters if p != "Missing"]
if include_missing:
df_ = df_[
(df_["Precision"].isin(selected_precisions))
| (df_["Precision"] == "UNK")
| (df_["Precision"].isna())
]
else:
df_ = df_[df_["Precision"].isin(selected_precisions)]
if license_filters:
include_missing = "Missing" in license_filters
selected_licenses = [l for l in license_filters if l != "Missing"]
if include_missing:
df_ = df_[
(df_["License"].isin(selected_licenses))
| (df_["License"] == "UNK")
| (df_["License"].isna())
]
else:
df_ = df_[df_["License"].isin(selected_licenses)]
df_ = df_[
(df_["Model Size Filter"] >= min_size) & (df_["Model Size Filter"] <= max_size)
]
df_ = df_.reset_index(drop=True)
fixed_column_order = [
"Rank",
"Rank Spread",
"Model Name",
"3C3H Score",
"95% CI (ยฑ)",
"Correctness",
"Completeness",
"Conciseness",
"Helpfulness",
"Honesty",
"Harmlessness",
"Revision",
"License",
"Precision",
"Model Size",
]
selected_cols = [
col
for col in fixed_column_order
if col in selected_cols and col in df_.columns
]
return df_[selected_cols]
def filter_df_tasks_hindigen(
search_query,
selected_cols,
precision_filters,
license_filters,
min_size,
max_size,
task_columns,
):
_, df_tasks_hi, _ = load_results("hindigen")
df_ = df_tasks_hi.copy()
if min_size > max_size:
min_size, max_size = max_size, min_size
if search_query:
df_ = df_[df_["Model Name"].str.contains(search_query, case=False, na=False)]
if precision_filters:
include_missing = "Missing" in precision_filters
selected_precisions = [p for p in precision_filters if p != "Missing"]
if include_missing:
df_ = df_[
(df_["Precision"].isin(selected_precisions))
| (df_["Precision"] == "UNK")
| (df_["Precision"].isna())
]
else:
df_ = df_[df_["Precision"].isin(selected_precisions)]
if license_filters:
include_missing = "Missing" in license_filters
selected_licenses = [l for l in license_filters if l != "Missing"]
if include_missing:
df_ = df_[
(df_["License"].isin(selected_licenses))
| (df_["License"] == "UNK")
| (df_["License"].isna())
]
else:
df_ = df_[df_["License"].isin(selected_licenses)]
df_ = df_[
(df_["Model Size Filter"] >= min_size) & (df_["Model Size Filter"] <= max_size)
]
if "Rank" in df_.columns:
df_ = df_.drop(columns=["Rank"])
if task_columns:
first_task = task_columns[0]
if first_task in df_.columns:
df_ = df_.sort_values(by=first_task, ascending=False)
else:
df_ = df_.sort_values(by="Model Name", ascending=True)
else:
df_ = df_.sort_values(by="Model Name", ascending=True)
df_ = df_.reset_index(drop=True)
df_.insert(0, "Rank", range(1, len(df_) + 1))
fixed_column_order = [
"Rank",
"Model Name",
"Question Answering (QA)",
"Grammar",
"Safety",
"Revision",
"License",
"Precision",
"Model Size",
]
selected_cols = [
col for col in fixed_column_order if col in selected_cols and col in df_.columns
]
return df_[selected_cols]
def filter_if_df(search_query, selected_cols, family_filters, min_size, max_size):
"""
Filters the instruction-following dataframe based on various criteria.
We have removed 'Filter by Type' and 'Filter by Creator'.
"""
df_ = load_if_data().copy()
if min_size > max_size:
min_size, max_size = max_size, min_size
# Search by model name
if search_query:
df_ = df_[df_["Model Name"].str.contains(search_query, case=False, na=False)]
# Filter by Family only (Creator and Type filters removed)
if family_filters:
df_ = df_[df_["Family"].isin(family_filters)]
# Filter by Model Size
df_ = df_[
(df_["Model Size Filter"] >= min_size) & (df_["Model Size Filter"] <= max_size)
]
# Re-rank within the filtered subset
if "Rank" in df_.columns:
df_ = df_.drop(columns=["Rank"])
df_ = df_.reset_index(drop=True)
df_.insert(0, "Rank", range(1, len(df_) + 1))
fixed_column_order = [
"Rank",
"Model Name",
"Average Accuracy (Ar)",
"Ar Prompt-lvl",
"Ar Instruction-lvl",
"Average Accuracy (En)",
"En Prompt-lvl",
"En Instruction-lvl",
"Type",
"Creator",
"Family",
"Size (B)",
"Base Model",
"Context Window",
"Lang.",
]
selected_cols = [
col for col in fixed_column_order if col in selected_cols and col in df_.columns
]
return df_[selected_cols]
def main():
# Load AraGen, HindiGen, and IFEval data
df_3c3h_ar, df_tasks_ar, task_columns_ar = load_results("aragen")
df_3c3h_hi, df_tasks_hi, task_columns_hi = load_results("hindigen")
df_if = load_if_data() # Instruction Following DF
# ---------- AraGen options ----------
precision_options_3c3h = sorted(df_3c3h_ar["Precision"].dropna().unique().tolist())
precision_options_3c3h = [p for p in precision_options_3c3h if p != "UNK"]
precision_options_3c3h.append("Missing")
license_options_3c3h = sorted(df_3c3h_ar["License"].dropna().unique().tolist())
license_options_3c3h = [l for l in license_options_3c3h if l != "UNK"]
license_options_3c3h.append("Missing")
precision_options_tasks = sorted(df_tasks_ar["Precision"].dropna().unique().tolist())
precision_options_tasks = [p for p in precision_options_tasks if p != "UNK"]
precision_options_tasks.append("Missing")
license_options_tasks = sorted(df_tasks_ar["License"].dropna().unique().tolist())
license_options_tasks = [l for l in license_options_tasks if l != "UNK"]
license_options_tasks.append("Missing")
min_model_size_3c3h = int(df_3c3h_ar["Model Size Filter"].min())
max_model_size_3c3h = int(df_3c3h_ar["Model Size Filter"].max())
min_model_size_tasks = int(df_tasks_ar["Model Size Filter"].min())
max_model_size_tasks = int(df_tasks_ar["Model Size Filter"].max())
column_choices_3c3h = [
col
for col in df_3c3h_ar.columns.tolist()
if col
not in [
"Model Size Filter",
"3C3H Score Lower",
"3C3H Score Upper",
]
]
column_choices_tasks = [
col
for col in df_tasks_ar.columns.tolist()
if col != "Model Size Filter"
]
# ---------- HindiGen options ----------
precision_options_3c3h_hi = sorted(df_3c3h_hi["Precision"].dropna().unique().tolist())
precision_options_3c3h_hi = [p for p in precision_options_3c3h_hi if p != "UNK"]
precision_options_3c3h_hi.append("Missing")
license_options_3c3h_hi = sorted(df_3c3h_hi["License"].dropna().unique().tolist())
license_options_3c3h_hi = [l for l in license_options_3c3h_hi if l != "UNK"]
license_options_3c3h_hi.append("Missing")
precision_options_tasks_hi = sorted(df_tasks_hi["Precision"].dropna().unique().tolist())
precision_options_tasks_hi = [p for p in precision_options_tasks_hi if p != "UNK"]
precision_options_tasks_hi.append("Missing")
license_options_tasks_hi = sorted(df_tasks_hi["License"].dropna().unique().tolist())
license_options_tasks_hi = [l for l in license_options_tasks_hi if l != "UNK"]
license_options_tasks_hi.append("Missing")
min_model_size_3c3h_hi = int(df_3c3h_hi["Model Size Filter"].min())
max_model_size_3c3h_hi = int(df_3c3h_hi["Model Size Filter"].max())
min_model_size_tasks_hi = int(df_tasks_hi["Model Size Filter"].min())
max_model_size_tasks_hi = int(df_tasks_hi["Model Size Filter"].max())
column_choices_3c3h_hi = [
col
for col in df_3c3h_hi.columns.tolist()
if col
not in [
"Model Size Filter",
"3C3H Score Lower",
"3C3H Score Upper",
]
]
column_choices_tasks_hi = [
col
for col in df_tasks_hi.columns.tolist()
if col != "Model Size Filter"
]
# ---------- IFEval options ----------
family_options_if = sorted(df_if["Family"].dropna().unique().tolist())
min_model_size_if = int(df_if["Model Size Filter"].min())
max_model_size_if = int(df_if["Model Size Filter"].max())
all_if_columns = [
"Rank",
"Model Name",
"Average Accuracy (Ar)",
"Ar Prompt-lvl",
"Ar Instruction-lvl",
"Average Accuracy (En)",
"En Prompt-lvl",
"En Instruction-lvl",
"Type",
"Creator",
"Family",
"Size (B)",
"Base Model",
"Context Window",
"Lang.",
]
default_if_columns = [
"Rank",
"Model Name",
"Average Accuracy (Ar)",
"Ar Prompt-lvl",
"Ar Instruction-lvl",
"Average Accuracy (En)",
]
with gr.Blocks() as demo:
gr.HTML(HEADER)
with gr.Tabs():
#
# AL Leaderboards Tab (AraGen + IFEval)
#
with gr.Tab("AL Leaderboards ๐
"):
with gr.Tabs():
# -------------------------
# Sub-Tab: AraGen Leaderboards
# -------------------------
with gr.Tab("๐ช AraGen Leaderboards"):
with gr.Tabs():
# 3C3H Scores
with gr.Tab("3C3H Scores"):
with gr.Accordion("โ๏ธ Filters", open=False):
with gr.Row():
search_box_3c3h = gr.Textbox(
placeholder="Search for models...",
label="Search",
interactive=True,
)
with gr.Row():
column_selector_3c3h = gr.CheckboxGroup(
choices=column_choices_3c3h,
value=[
"Rank",
"Rank Spread",
"Model Name",
"3C3H Score",
"95% CI (ยฑ)",
"Correctness",
"Completeness",
"Conciseness",
"Helpfulness",
"Honesty",
"Harmlessness",
],
label="Select columns to display",
)
with gr.Row():
license_filter_3c3h = gr.CheckboxGroup(
choices=license_options_3c3h,
value=license_options_3c3h.copy(),
label="Filter by License",
)
precision_filter_3c3h = gr.CheckboxGroup(
choices=precision_options_3c3h,
value=precision_options_3c3h.copy(),
label="Filter by Precision",
)
with gr.Row():
model_size_min_filter_3c3h = gr.Slider(
minimum=min_model_size_3c3h,
maximum=max_model_size_3c3h,
value=min_model_size_3c3h,
step=1,
label="Minimum Model Size",
interactive=True,
)
model_size_max_filter_3c3h = gr.Slider(
minimum=min_model_size_3c3h,
maximum=max_model_size_3c3h,
value=max_model_size_3c3h,
step=1,
label="Maximum Model Size",
interactive=True,
)
leaderboard_3c3h = gr.Dataframe(
df_3c3h_ar[
[
"Rank",
"Rank Spread",
"Model Name",
"3C3H Score",
"95% CI (ยฑ)",
"Correctness",
"Completeness",
"Conciseness",
"Helpfulness",
"Honesty",
"Harmlessness",
]
],
interactive=False,
)
filter_inputs_3c3h = [
search_box_3c3h,
column_selector_3c3h,
precision_filter_3c3h,
license_filter_3c3h,
model_size_min_filter_3c3h,
model_size_max_filter_3c3h,
]
search_box_3c3h.submit(
filter_df_3c3h,
inputs=filter_inputs_3c3h,
outputs=leaderboard_3c3h,
)
for component in filter_inputs_3c3h:
component.change(
filter_df_3c3h,
inputs=filter_inputs_3c3h,
outputs=leaderboard_3c3h,
)
# Tasks Scores
with gr.Tab("Tasks Scores"):
gr.Markdown(
"This table is sorted based on the **first task** "
"(e.g., Question Answering (QA))."
)
with gr.Accordion("โ๏ธ Filters", open=False):
with gr.Row():
search_box_tasks = gr.Textbox(
placeholder="Search for models...",
label="Search",
interactive=True,
)
with gr.Row():
column_selector_tasks = gr.CheckboxGroup(
choices=column_choices_tasks,
value=["Rank", "Model Name"] + task_columns_ar,
label="Select columns to display",
)
with gr.Row():
license_filter_tasks = gr.CheckboxGroup(
choices=license_options_tasks,
value=license_options_tasks.copy(),
label="Filter by License",
)
precision_filter_tasks = gr.CheckboxGroup(
choices=precision_options_tasks,
value=precision_options_tasks.copy(),
label="Filter by Precision",
)
with gr.Row():
model_size_min_filter_tasks = gr.Slider(
minimum=min_model_size_tasks,
maximum=max_model_size_tasks,
value=min_model_size_tasks,
step=1,
label="Minimum Model Size",
interactive=True,
)
model_size_max_filter_tasks = gr.Slider(
minimum=min_model_size_tasks,
maximum=max_model_size_tasks,
value=max_model_size_tasks,
step=1,
label="Maximum Model Size",
interactive=True,
)
leaderboard_tasks = gr.Dataframe(
df_tasks_ar[["Rank", "Model Name"] + task_columns_ar],
interactive=False,
)
filter_inputs_tasks = [
search_box_tasks,
column_selector_tasks,
precision_filter_tasks,
license_filter_tasks,
model_size_min_filter_tasks,
model_size_max_filter_tasks,
]
search_box_tasks.submit(
lambda sq, cols, pf, lf, min_val, max_val: filter_df_tasks(
sq, cols, pf, lf, min_val, max_val, task_columns_ar
),
inputs=filter_inputs_tasks,
outputs=leaderboard_tasks,
)
for component in filter_inputs_tasks:
component.change(
lambda sq, cols, pf, lf, min_val, max_val: filter_df_tasks(
sq, cols, pf, lf, min_val, max_val, task_columns_ar
),
inputs=filter_inputs_tasks,
outputs=leaderboard_tasks,
)
# -------------------------
# Sub-Tab: Instruction Following Leaderboard
# -------------------------
with gr.Tab("๐ก๏ธ Instruction Following Leaderboard"):
with gr.Accordion("โ๏ธ Filters", open=False):
with gr.Row():
search_box_if = gr.Textbox(
placeholder="Search for models...",
label="Search",
interactive=True,
)
with gr.Row():
column_selector_if = gr.CheckboxGroup(
choices=all_if_columns,
value=default_if_columns,
label="Select columns to display",
)
with gr.Row():
family_filter_if = gr.CheckboxGroup(
choices=family_options_if,
value=family_options_if.copy(),
label="Filter by Family",
)
with gr.Row():
model_size_min_filter_if = gr.Slider(
minimum=min_model_size_if,
maximum=max_model_size_if,
value=min_model_size_if,
step=1,
label="Minimum Model Size",
interactive=True,
)
model_size_max_filter_if = gr.Slider(
minimum=min_model_size_if,
maximum=max_model_size_if,
value=max_model_size_if,
step=1,
label="Maximum Model Size",
interactive=True,
)
leaderboard_if = gr.Dataframe(
df_if[default_if_columns],
interactive=False,
)
filter_inputs_if = [
search_box_if,
column_selector_if,
family_filter_if,
model_size_min_filter_if,
model_size_max_filter_if,
]
search_box_if.submit(
filter_if_df, inputs=filter_inputs_if, outputs=leaderboard_if
)
for component in filter_inputs_if:
component.change(
filter_if_df, inputs=filter_inputs_if, outputs=leaderboard_if
)
#
# HindiGen Leaderboards Tab
#
with gr.Tab("HindiGen Leaderboards ๐ฎ๐ณ"):
with gr.Tabs():
# 3C3H Scores
with gr.Tab("3C3H Scores"):
with gr.Accordion("โ๏ธ Filters", open=False):
with gr.Row():
search_box_3c3h_hi = gr.Textbox(
placeholder="Search for models...",
label="Search",
interactive=True,
)
with gr.Row():
column_selector_3c3h_hi = gr.CheckboxGroup(
choices=column_choices_3c3h_hi,
value=[
"Rank",
"Rank Spread",
"Model Name",
"3C3H Score",
"95% CI (ยฑ)",
"Correctness",
"Completeness",
"Conciseness",
"Helpfulness",
"Honesty",
"Harmlessness",
],
label="Select columns to display",
)
with gr.Row():
license_filter_3c3h_hi = gr.CheckboxGroup(
choices=license_options_3c3h_hi,
value=license_options_3c3h_hi.copy(),
label="Filter by License",
)
precision_filter_3c3h_hi = gr.CheckboxGroup(
choices=precision_options_3c3h_hi,
value=precision_options_3c3h_hi.copy(),
label="Filter by Precision",
)
with gr.Row():
model_size_min_filter_3c3h_hi = gr.Slider(
minimum=min_model_size_3c3h_hi,
maximum=max_model_size_3c3h_hi,
value=min_model_size_3c3h_hi,
step=1,
label="Minimum Model Size",
interactive=True,
)
model_size_max_filter_3c3h_hi = gr.Slider(
minimum=min_model_size_3c3h_hi,
maximum=max_model_size_3c3h_hi,
value=max_model_size_3c3h_hi,
step=1,
label="Maximum Model Size",
interactive=True,
)
leaderboard_3c3h_hi = gr.Dataframe(
df_3c3h_hi[
[
"Rank",
"Rank Spread",
"Model Name",
"3C3H Score",
"95% CI (ยฑ)",
"Correctness",
"Completeness",
"Conciseness",
"Helpfulness",
"Honesty",
"Harmlessness",
]
],
interactive=False,
)
filter_inputs_3c3h_hi = [
search_box_3c3h_hi,
column_selector_3c3h_hi,
precision_filter_3c3h_hi,
license_filter_3c3h_hi,
model_size_min_filter_3c3h_hi,
model_size_max_filter_3c3h_hi,
]
search_box_3c3h_hi.submit(
filter_df_3c3h_hindigen,
inputs=filter_inputs_3c3h_hi,
outputs=leaderboard_3c3h_hi,
)
for component in filter_inputs_3c3h_hi:
component.change(
filter_df_3c3h_hindigen,
inputs=filter_inputs_3c3h_hi,
outputs=leaderboard_3c3h_hi,
)
# Tasks Scores
with gr.Tab("Tasks Scores"):
gr.Markdown(
"This table is sorted based on the **first task** "
"(e.g., Question Answering (QA))."
)
with gr.Accordion("โ๏ธ Filters", open=False):
with gr.Row():
search_box_tasks_hi = gr.Textbox(
placeholder="Search for models...",
label="Search",
interactive=True,
)
with gr.Row():
column_selector_tasks_hi = gr.CheckboxGroup(
choices=column_choices_tasks_hi,
value=["Rank", "Model Name"] + task_columns_hi,
label="Select columns to display",
)
with gr.Row():
license_filter_tasks_hi = gr.CheckboxGroup(
choices=license_options_tasks_hi,
value=license_options_tasks_hi.copy(),
label="Filter by License",
)
precision_filter_tasks_hi = gr.CheckboxGroup(
choices=precision_options_tasks_hi,
value=precision_options_tasks_hi.copy(),
label="Filter by Precision",
)
with gr.Row():
model_size_min_filter_tasks_hi = gr.Slider(
minimum=min_model_size_tasks_hi,
maximum=max_model_size_tasks_hi,
value=min_model_size_tasks_hi,
step=1,
label="Minimum Model Size",
interactive=True,
)
model_size_max_filter_tasks_hi = gr.Slider(
minimum=min_model_size_tasks_hi,
maximum=max_model_size_tasks_hi,
value=max_model_size_tasks_hi,
step=1,
label="Maximum Model Size",
interactive=True,
)
leaderboard_tasks_hi = gr.Dataframe(
df_tasks_hi[["Rank", "Model Name"] + task_columns_hi],
interactive=False,
)
filter_inputs_tasks_hi = [
search_box_tasks_hi,
column_selector_tasks_hi,
precision_filter_tasks_hi,
license_filter_tasks_hi,
model_size_min_filter_tasks_hi,
model_size_max_filter_tasks_hi,
]
search_box_tasks_hi.submit(
lambda sq, cols, pf, lf, min_val, max_val: filter_df_tasks_hindigen(
sq, cols, pf, lf, min_val, max_val, task_columns_hi
),
inputs=filter_inputs_tasks_hi,
outputs=leaderboard_tasks_hi,
)
for component in filter_inputs_tasks_hi:
component.change(
lambda sq, cols, pf, lf, min_val, max_val: filter_df_tasks_hindigen(
sq, cols, pf, lf, min_val, max_val, task_columns_hi
),
inputs=filter_inputs_tasks_hi,
outputs=leaderboard_tasks_hi,
)
#
# About & Submit Tab
#
with gr.Tab("About & Submit Page ๐"):
# Load request tables for all three request datasets
df_pending_ar = load_requests(ARAGEN_REQUESTS_REPO_ID, "pending")
df_finished_ar = load_requests(ARAGEN_REQUESTS_REPO_ID, "finished")
df_failed_ar = load_requests(ARAGEN_REQUESTS_REPO_ID, "failed")
df_pending_hi = load_requests(HINDIGEN_REQUESTS_REPO_ID, "pending")
df_finished_hi = load_requests(HINDIGEN_REQUESTS_REPO_ID, "finished")
df_failed_hi = load_requests(HINDIGEN_REQUESTS_REPO_ID, "failed")
df_pending_if = load_requests(IFEVAL_REQUESTS_REPO_ID, "pending")
df_finished_if = load_requests(IFEVAL_REQUESTS_REPO_ID, "finished")
df_failed_if = load_requests(IFEVAL_REQUESTS_REPO_ID, "failed")
gr.Markdown(ABOUT_SECTION)
gr.Markdown("## Submit Your Model for Evaluation")
with gr.Column():
model_name_input = gr.Textbox(
label="Model Name",
placeholder="Enter the full model name from HuggingFace Hub (e.g., inceptionai/jais-family-30b-8k)",
)
revision_input = gr.Textbox(
label="Revision", placeholder="main", value="main"
)
precision_input = gr.Dropdown(
choices=["float16", "float32", "bfloat16", "8bit", "4bit"],
label="Precision",
value="float16",
)
params_input = gr.Textbox(
label="Params",
placeholder="Enter the approximate number of parameters as Integer (e.g., 7, 13, 30, 70 ...)",
)
license_input = gr.Textbox(
label="License",
placeholder="Enter the license type (Generic one is 'Open' in case no License is provided)",
value="Open",
)
modality_input = gr.Radio(
choices=["Text"],
label="Modality",
value="Text",
)
leaderboard_targets = gr.CheckboxGroup(
choices=["AraGen", "HindiGen", "IFEval"],
label="Choose which leaderboard(s) to submit to",
info="You must choose at least one.",
)
submit_button = gr.Button("Submit Model")
submission_result = gr.Markdown()
submit_button.click(
submit_model,
inputs=[
model_name_input,
revision_input,
precision_input,
params_input,
license_input,
modality_input,
leaderboard_targets,
],
outputs=submission_result,
)
gr.Markdown("## Evaluation Status")
gr.Markdown("### AraGen Requests")
with gr.Accordion(
f"AraGen โ Pending Evaluations ({len(df_pending_ar)})", open=False
):
if not df_pending_ar.empty:
gr.Dataframe(df_pending_ar)
else:
gr.Markdown("No pending evaluations.")
with gr.Accordion(
f"AraGen โ Finished Evaluations ({len(df_finished_ar)})", open=False
):
if not df_finished_ar.empty:
gr.Dataframe(df_finished_ar)
else:
gr.Markdown("No finished evaluations.")
with gr.Accordion(
f"AraGen โ Failed Evaluations ({len(df_failed_ar)})", open=False
):
if not df_failed_ar.empty:
gr.Dataframe(df_failed_ar)
else:
gr.Markdown("No failed evaluations.")
gr.Markdown("### HindiGen Requests")
with gr.Accordion(
f"HindiGen โ Pending Evaluations ({len(df_pending_hi)})", open=False
):
if not df_pending_hi.empty:
gr.Dataframe(df_pending_hi)
else:
gr.Markdown("No pending evaluations.")
with gr.Accordion(
f"HindiGen โ Finished Evaluations ({len(df_finished_hi)})", open=False
):
if not df_finished_hi.empty:
gr.Dataframe(df_finished_hi)
else:
gr.Markdown("No finished evaluations.")
with gr.Accordion(
f"HindiGen โ Failed Evaluations ({len(df_failed_hi)})", open=False
):
if not df_failed_hi.empty:
gr.Dataframe(df_failed_hi)
else:
gr.Markdown("No failed evaluations.")
gr.Markdown("### IFEval Requests")
with gr.Accordion(
f"IFEval โ Pending Evaluations ({len(df_pending_if)})", open=False
):
if not df_pending_if.empty:
gr.Dataframe(df_pending_if)
else:
gr.Markdown("No pending evaluations.")
with gr.Accordion(
f"IFEval โ Finished Evaluations ({len(df_finished_if)})", open=False
):
if not df_finished_if.empty:
gr.Dataframe(df_finished_if)
else:
gr.Markdown("No finished evaluations.")
with gr.Accordion(
f"IFEval โ Failed Evaluations ({len(df_failed_if)})", open=False
):
if not df_failed_if.empty:
gr.Dataframe(df_failed_if)
else:
gr.Markdown("No failed evaluations.")
# Citation Section
with gr.Row():
with gr.Accordion("๐ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=8,
elem_id="citation-button",
show_copy_button=True,
)
gr.HTML(BOTTOM_LOGO)
demo.launch()
if __name__ == "__main__":
main()
|