Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2021 The Deeplab2 Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| r"""Converts Depth-aware Video Panoptic Segmentation (DVPS) data to sharded TFRecord file format with tf.train.Example protos. | |
| The expected directory structure of the DVPS dataset should be as follows: | |
| + DVPS_ROOT | |
| + train | val | |
| - ground-truth depth maps (*_depth.png) | |
| - ground-truth panoptic maps (*_gtFine_instanceTrainIds.png) | |
| - images (*_leftImg8bit.png) | |
| + test | |
| - images (*_leftImg8bit.png) | |
| The ground-truth panoptic map is encoded as the following in PNG format: | |
| panoptic ID = semantic ID * panoptic divisor (1000) + instance ID | |
| The output Example proto contains the following fields: | |
| image/encoded: encoded image content. | |
| image/filename: image filename. | |
| image/format: image file format. | |
| image/height: image height. | |
| image/width: image width. | |
| image/channels: image channels. | |
| image/segmentation/class/encoded: encoded panoptic segmentation content. | |
| image/segmentation/class/format: segmentation encoding format. | |
| image/depth/encoded: encoded depth content. | |
| image/depth/format: depth encoding format. | |
| video/sequence_id: sequence ID of the frame. | |
| video/frame_id: ID of the frame of the video sequence. | |
| next_image/encoded: encoded next-frame image content. | |
| next_image/segmentation/class/encoded: encoded panoptic segmentation content | |
| of the next frame. | |
| The output panoptic segmentation map stored in the Example will be the raw bytes | |
| of an int32 panoptic map, where each pixel is assigned to a panoptic ID: | |
| panoptic ID = semantic ID * panoptic divisor (1000) + instance ID | |
| where semantic ID will be the same with `category_id` for each segment, and | |
| ignore label for pixels not belong to any segment. | |
| The depth map will be the raw bytes of an int32 depth map, where each pixel is: | |
| depth map = depth ground truth * 256 | |
| Example to run the scipt: | |
| python deeplab2/data/build_dvps_data.py \ | |
| --dvps_root=${DVPS_ROOT} \ | |
| --output_dir=${OUTPUT_DIR} | |
| """ | |
| import math | |
| import os | |
| from typing import Sequence, Tuple, Optional | |
| from absl import app | |
| from absl import flags | |
| from absl import logging | |
| import numpy as np | |
| from PIL import Image | |
| import tensorflow as tf | |
| from deeplab2.data import data_utils | |
| FLAGS = flags.FLAGS | |
| flags.DEFINE_string('dvps_root', None, 'DVPS dataset root folder.') | |
| flags.DEFINE_string('output_dir', None, | |
| 'Path to save converted TFRecord of TensorFlow examples.') | |
| _PANOPTIC_DEPTH_FORMAT = 'raw' | |
| _NUM_SHARDS = 1000 | |
| _TF_RECORD_PATTERN = '%s-%05d-of-%05d.tfrecord' | |
| _IMAGE_SUFFIX = '_leftImg8bit.png' | |
| _LABEL_SUFFIX = '_gtFine_instanceTrainIds.png' | |
| _DEPTH_SUFFIX = '_depth.png' | |
| def _get_image_info_from_path(image_path: str) -> Tuple[str, str]: | |
| """Gets image info including sequence id and image id. | |
| Image path is in the format of '{sequence_id}_{image_id}_*.png', | |
| where `sequence_id` refers to the id of the video sequence, and `image_id` is | |
| the id of the image in the video sequence. | |
| Args: | |
| image_path: Absolute path of the image. | |
| Returns: | |
| sequence_id, and image_id as strings. | |
| """ | |
| image_path = os.path.basename(image_path) | |
| return tuple(image_path.split('_')[:2]) | |
| def _get_images(dvps_root: str, dataset_split: str) -> Sequence[str]: | |
| """Gets files for the specified data type and dataset split. | |
| Args: | |
| dvps_root: String, path to DVPS dataset root folder. | |
| dataset_split: String, dataset split ('train', 'val', 'test'). | |
| Returns: | |
| A list of sorted file names under dvps_root and dataset_split. | |
| """ | |
| search_files = os.path.join(dvps_root, dataset_split, '*' + _IMAGE_SUFFIX) | |
| filenames = tf.io.gfile.glob(search_files) | |
| return sorted(filenames) | |
| def _decode_panoptic_or_depth_map(map_path: str) -> Optional[str]: | |
| """Decodes the panoptic or depth map from encoded image file. | |
| Args: | |
| map_path: Path to the panoptic or depth map image file. | |
| Returns: | |
| Panoptic or depth map as an encoded int32 numpy array bytes or None if not | |
| existing. | |
| """ | |
| if not tf.io.gfile.exists(map_path): | |
| return None | |
| with tf.io.gfile.GFile(map_path, 'rb') as f: | |
| decoded_map = np.array(Image.open(f)).astype(np.int32) | |
| return decoded_map.tobytes() | |
| def _get_next_frame_path(image_path: str) -> Optional[str]: | |
| """Gets next frame path. | |
| If not exists, return None. | |
| The files are named {sequence_id}_{frame_id}*. To get the path of the next | |
| frame, this function keeps sequence_id and increase the frame_id by 1. It | |
| finds all the files matching this pattern, and returns the corresponding | |
| file path matching the input type. | |
| Args: | |
| image_path: String, path to the image. | |
| Returns: | |
| A string for the path of the next frame of the given image path or None if | |
| the given image path is the last frame of the sequence. | |
| """ | |
| sequence_id, image_id = _get_image_info_from_path(image_path) | |
| next_image_id = '{:06d}'.format(int(image_id) + 1) | |
| next_image_name = sequence_id + '_' + next_image_id | |
| next_image_path = None | |
| for suffix in (_IMAGE_SUFFIX, _LABEL_SUFFIX): | |
| if image_path.endswith(suffix): | |
| next_image_path = os.path.join( | |
| os.path.dirname(image_path), next_image_name + suffix) | |
| if not tf.io.gfile.exists(next_image_path): | |
| return None | |
| return next_image_path | |
| def _create_tfexample(image_path: str, panoptic_map_path: str, | |
| depth_map_path: str) -> Optional[tf.train.Example]: | |
| """Creates a TF example for each image. | |
| Args: | |
| image_path: Path to the image. | |
| panoptic_map_path: Path to the panoptic map (as an image file). | |
| depth_map_path: Path to the depth map (as an image file). | |
| Returns: | |
| TF example proto. | |
| """ | |
| with tf.io.gfile.GFile(image_path, 'rb') as f: | |
| image_data = f.read() | |
| label_data = _decode_panoptic_or_depth_map(panoptic_map_path) | |
| depth_data = _decode_panoptic_or_depth_map(depth_map_path) | |
| image_name = os.path.basename(image_path) | |
| image_format = image_name.split('.')[1].lower() | |
| sequence_id, frame_id = _get_image_info_from_path(image_path) | |
| next_image_data = None | |
| next_label_data = None | |
| # Next image. | |
| next_image_path = _get_next_frame_path(image_path) | |
| # If there is no next image, no examples will be created. | |
| if next_image_path is None: | |
| return None | |
| with tf.io.gfile.GFile(next_image_path, 'rb') as f: | |
| next_image_data = f.read() | |
| # Next panoptic map. | |
| next_panoptic_map_path = _get_next_frame_path(panoptic_map_path) | |
| next_label_data = _decode_panoptic_or_depth_map(next_panoptic_map_path) | |
| return data_utils.create_video_and_depth_tfexample( | |
| image_data, | |
| image_format, | |
| image_name, | |
| label_format=_PANOPTIC_DEPTH_FORMAT, | |
| sequence_id=sequence_id, | |
| image_id=frame_id, | |
| label_data=label_data, | |
| next_image_data=next_image_data, | |
| next_label_data=next_label_data, | |
| depth_data=depth_data, | |
| depth_format=_PANOPTIC_DEPTH_FORMAT) | |
| def _convert_dataset(dvps_root: str, dataset_split: str, output_dir: str): | |
| """Converts the specified dataset split to TFRecord format. | |
| Args: | |
| dvps_root: String, path to DVPS dataset root folder. | |
| dataset_split: String, the dataset split (e.g., train, val, test). | |
| output_dir: String, directory to write output TFRecords to. | |
| """ | |
| image_files = _get_images(dvps_root, dataset_split) | |
| num_images = len(image_files) | |
| num_per_shard = int(math.ceil(len(image_files) / _NUM_SHARDS)) | |
| for shard_id in range(_NUM_SHARDS): | |
| shard_filename = _TF_RECORD_PATTERN % (dataset_split, shard_id, _NUM_SHARDS) | |
| output_filename = os.path.join(output_dir, shard_filename) | |
| with tf.io.TFRecordWriter(output_filename) as tfrecord_writer: | |
| start_idx = shard_id * num_per_shard | |
| end_idx = min((shard_id + 1) * num_per_shard, num_images) | |
| for i in range(start_idx, end_idx): | |
| image_path = image_files[i] | |
| panoptic_map_path = image_path.replace(_IMAGE_SUFFIX, _LABEL_SUFFIX) | |
| depth_map_path = image_path.replace(_IMAGE_SUFFIX, _DEPTH_SUFFIX) | |
| example = _create_tfexample(image_path, panoptic_map_path, | |
| depth_map_path) | |
| if example is not None: | |
| tfrecord_writer.write(example.SerializeToString()) | |
| def main(argv: Sequence[str]) -> None: | |
| if len(argv) > 1: | |
| raise app.UsageError('Too many command-line arguments.') | |
| tf.io.gfile.makedirs(FLAGS.output_dir) | |
| for dataset_split in ('train', 'val', 'test'): | |
| logging.info('Starts to processing DVPS dataset split %s.', dataset_split) | |
| _convert_dataset(FLAGS.dvps_root, dataset_split, FLAGS.output_dir) | |
| if __name__ == '__main__': | |
| app.run(main) | |