Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2021 The Deeplab2 Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Tests for segmentation_tracking_quality.""" | |
| import numpy as np | |
| import tensorflow as tf | |
| from deeplab2.evaluation import segmentation_and_tracking_quality as stq | |
| def _compute_metric_and_compare(metric, ground_truth, prediction, | |
| expected_result): | |
| metric.update_state( | |
| tf.convert_to_tensor(ground_truth), tf.convert_to_tensor(prediction), 1) | |
| result = metric.result() | |
| metric.reset_states() | |
| np.testing.assert_almost_equal(result['STQ'], expected_result[0]) | |
| np.testing.assert_almost_equal(result['AQ'], expected_result[1]) | |
| np.testing.assert_almost_equal(result['IoU'], expected_result[2]) | |
| np.testing.assert_almost_equal(result['STQ_per_seq'], [expected_result[0]]) | |
| np.testing.assert_almost_equal(result['AQ_per_seq'], [expected_result[1]]) | |
| np.testing.assert_almost_equal(result['IoU_per_seq'], [expected_result[2]]) | |
| np.testing.assert_almost_equal(result['ID_per_seq'], [1]) | |
| np.testing.assert_almost_equal(result['Length_per_seq'], [1]) | |
| class STQualityTest(tf.test.TestCase): | |
| def test_complex_example(self): | |
| n_classes = 3 | |
| ignore_label = 255 | |
| # classes = ['sky', 'vegetation', 'cars']. | |
| things_list = [2] | |
| max_instances_per_category = 1000 | |
| ground_truth_semantic_1 = np.array([[0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 0, 0, 2, 0, 1, 1, 1], | |
| [0, 2, 2, 2, 2, 1, 1, 1], | |
| [2, 2, 2, 2, 2, 2, 1, 1], | |
| [2, 2, 2, 2, 2, 2, 2, 1], | |
| [2, 2, 2, 2, 2, 2, 2, 1], | |
| [2, 2, 2, 2, 2, 2, 1, 1]]) | |
| ground_truth_semantic_2 = np.array([[0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 2, 0, 0, 1, 1, 0, 0], | |
| [2, 2, 2, 1, 1, 1, 1, 0], | |
| [2, 2, 2, 2, 1, 1, 1, 1], | |
| [2, 2, 2, 2, 2, 1, 1, 1], | |
| [2, 2, 2, 2, 2, 1, 1, 1], | |
| [2, 2, 2, 2, 1, 1, 1, 1]]) | |
| ground_truth_semantic_3 = np.array([[0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 0, 0, 0, 0, 0, 0, 0], | |
| [2, 0, 1, 1, 1, 0, 0, 0], | |
| [2, 2, 1, 1, 1, 1, 0, 0], | |
| [2, 2, 2, 1, 1, 1, 1, 0], | |
| [2, 2, 2, 1, 1, 1, 1, 1], | |
| [2, 2, 2, 1, 1, 1, 1, 1]]) | |
| ground_truth_semantic = np.stack([ | |
| ground_truth_semantic_1, ground_truth_semantic_2, | |
| ground_truth_semantic_3 | |
| ]) | |
| ground_truth_instance_1 = np.array([[0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 0, 0, 2, 0, 0, 0, 0], | |
| [0, 2, 2, 2, 2, 0, 0, 0], | |
| [2, 2, 2, 2, 2, 2, 0, 0], | |
| [2, 2, 2, 2, 2, 2, 2, 0], | |
| [2, 2, 2, 2, 2, 2, 2, 0], | |
| [2, 2, 2, 2, 2, 2, 0, 0]]) | |
| ground_truth_instance_2 = np.array([[0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 2, 0, 0, 0, 0, 0, 0], | |
| [2, 2, 2, 0, 0, 0, 0, 0], | |
| [2, 2, 2, 2, 0, 0, 0, 0], | |
| [2, 2, 2, 2, 2, 0, 0, 0], | |
| [2, 2, 2, 2, 2, 0, 0, 0], | |
| [2, 2, 2, 2, 0, 0, 0, 0]]) | |
| ground_truth_instance_3 = np.array([[0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 0, 0, 0, 0, 0, 0, 0], | |
| [2, 0, 0, 0, 0, 0, 0, 0], | |
| [2, 2, 0, 0, 0, 0, 0, 0], | |
| [2, 2, 2, 0, 0, 0, 0, 0], | |
| [2, 2, 2, 0, 0, 0, 0, 0], | |
| [2, 2, 2, 0, 0, 0, 0, 0]]) | |
| ground_truth_instance = np.stack([ | |
| ground_truth_instance_1, ground_truth_instance_2, | |
| ground_truth_instance_3 | |
| ]) | |
| ground_truth = (ground_truth_semantic * max_instances_per_category | |
| + ground_truth_instance) | |
| prediction_semantic_1 = np.array([[0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 0, 0, 0, 0, 1, 0, 0], | |
| [0, 0, 0, 2, 2, 1, 1, 1], | |
| [0, 2, 2, 2, 2, 2, 1, 1], | |
| [2, 2, 2, 2, 2, 2, 2, 1], | |
| [2, 2, 2, 2, 2, 2, 2, 1], | |
| [2, 2, 2, 2, 2, 2, 2, 1]]) | |
| prediction_semantic_2 = np.array([[0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 0, 0, 0, 1, 1, 0, 0], | |
| [0, 2, 2, 2, 1, 1, 1, 1], | |
| [2, 2, 2, 2, 1, 1, 1, 1], | |
| [2, 2, 2, 2, 2, 1, 1, 1], | |
| [2, 2, 2, 2, 2, 2, 1, 1], | |
| [2, 2, 2, 2, 2, 1, 1, 1]]) | |
| prediction_semantic_3 = np.array([[0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 0, 0, 0, 1, 0, 0, 0], | |
| [0, 0, 1, 1, 1, 1, 0, 0], | |
| [2, 2, 2, 1, 1, 1, 0, 0], | |
| [2, 2, 2, 1, 1, 1, 1, 1], | |
| [2, 2, 2, 2, 1, 1, 1, 1], | |
| [2, 2, 2, 2, 1, 1, 1, 1]]) | |
| prediction_semantic = np.stack( | |
| [prediction_semantic_1, prediction_semantic_2, prediction_semantic_3]) | |
| prediction_instance_1 = np.array([[0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 0, 0, 2, 2, 0, 0, 0], | |
| [0, 2, 2, 2, 2, 1, 0, 0], | |
| [2, 2, 2, 2, 2, 1, 1, 0], | |
| [2, 2, 2, 2, 1, 1, 1, 0], | |
| [2, 2, 2, 2, 1, 1, 1, 0]]) | |
| prediction_instance_2 = np.array([[0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 2, 2, 2, 0, 0, 0, 0], | |
| [2, 2, 2, 2, 0, 0, 0, 0], | |
| [2, 2, 2, 2, 2, 0, 0, 0], | |
| [2, 2, 2, 2, 1, 1, 0, 0], | |
| [2, 2, 2, 2, 1, 0, 0, 0]]) | |
| prediction_instance_3 = np.array([[0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 0, 0, 0, 0, 0, 0, 0], | |
| [0, 0, 0, 0, 0, 0, 0, 0], | |
| [2, 2, 2, 0, 0, 0, 0, 0], | |
| [2, 2, 2, 0, 0, 0, 0, 0], | |
| [2, 2, 2, 2, 0, 0, 0, 0], | |
| [2, 2, 2, 2, 0, 0, 0, 0]]) | |
| prediction_instance = np.stack( | |
| [prediction_instance_1, prediction_instance_2, prediction_instance_3]) | |
| prediction = (prediction_semantic * max_instances_per_category | |
| + prediction_instance) | |
| # Compute STQuality. | |
| stq_metric = stq.STQuality( | |
| n_classes, things_list, ignore_label, max_instances_per_category, | |
| 256 * 256) | |
| for i in range(3): | |
| stq_metric.update_state( | |
| tf.convert_to_tensor(ground_truth[i, ...], dtype=tf.int32), | |
| tf.convert_to_tensor(prediction[i, ...], dtype=tf.int32), | |
| 1) | |
| result = stq_metric.result() | |
| np.testing.assert_almost_equal(result['STQ'], 0.66841773352) | |
| np.testing.assert_almost_equal(result['AQ'], 0.55366581415) | |
| np.testing.assert_almost_equal(result['IoU'], 0.8069529580309542) | |
| np.testing.assert_almost_equal(result['STQ_per_seq'], [0.66841773352]) | |
| np.testing.assert_almost_equal(result['AQ_per_seq'], [0.55366581415]) | |
| np.testing.assert_almost_equal(result['IoU_per_seq'], [0.8069529580309542]) | |
| np.testing.assert_almost_equal(result['ID_per_seq'], [1]) | |
| np.testing.assert_almost_equal(result['Length_per_seq'], [3]) | |
| def test_basic_examples(self): | |
| n_classes = 2 | |
| ignore_label = 255 | |
| # classes = ['cars', 'sky']. | |
| things_list = [0] | |
| max_instances_per_category = 1000 | |
| # Since the semantic label is `0`, the instance ID is enough. | |
| ground_truth_track = np.array([[1, 1, 1, 1, 1]]) | |
| stq_metric = stq.STQuality( | |
| n_classes, things_list, ignore_label, max_instances_per_category, | |
| 256 * 256) | |
| with self.subTest('Example 0'): | |
| predicted_track = np.array([[1, 1, 1, 1, 1]]) | |
| _compute_metric_and_compare(stq_metric, ground_truth_track, | |
| predicted_track, [1.0, 1.0, 1.0]) | |
| with self.subTest('Example 1'): | |
| predicted_track = np.array([[1, 1, 2, 2, 2]]) | |
| _compute_metric_and_compare(stq_metric, ground_truth_track, | |
| predicted_track, [0.72111026, 0.52, 1.0]) | |
| with self.subTest('Example 2'): | |
| predicted_track = np.array([[1, 2, 2, 2, 2]]) | |
| _compute_metric_and_compare(stq_metric, ground_truth_track, | |
| predicted_track, [0.82462113, 0.68, 1.0]) | |
| with self.subTest('Example 3'): | |
| predicted_track = np.array([[1, 2, 3, 4, 5]]) | |
| _compute_metric_and_compare(stq_metric, ground_truth_track, | |
| predicted_track, [0.447213596, 0.2, 1.0]) | |
| with self.subTest('Example 4'): | |
| predicted_track = np.array([[1, 2, 1, 2, 2]]) | |
| _compute_metric_and_compare(stq_metric, ground_truth_track, | |
| predicted_track, [0.72111026, 0.52, 1.0]) | |
| with self.subTest('Example 5'): | |
| predicted_track = ( | |
| np.array([[0, 1, 1, 1, 1]]) + | |
| np.array([[1, 0, 0, 0, 0]]) * max_instances_per_category) | |
| _compute_metric_and_compare(stq_metric, ground_truth_track, | |
| predicted_track, [0.50596443, 0.64, 0.4]) | |
| # First label is `crowd`. | |
| ground_truth_track = np.array([[0, 1, 1, 1, 1, 1]]) | |
| with self.subTest('Example 6'): | |
| predicted_track = np.array([[1, 1, 1, 1, 1, 1]]) | |
| _compute_metric_and_compare(stq_metric, ground_truth_track, | |
| predicted_track, [1.0, 1.0, 1.0]) | |
| with self.subTest('Example 7'): | |
| predicted_track = np.array([[2, 2, 2, 2, 1, 1]]) | |
| _compute_metric_and_compare(stq_metric, ground_truth_track, | |
| predicted_track, [0.72111026, 0.52, 1.0]) | |
| with self.subTest('Example 8'): | |
| predicted_track = ( | |
| np.array([[2, 2, 0, 1, 1, 1]]) + | |
| np.array([[0, 0, 1, 0, 0, 0]]) * max_instances_per_category) | |
| _compute_metric_and_compare(stq_metric, ground_truth_track, | |
| predicted_track, | |
| [0.40824829, 0.4, 5.0 / 12.0]) | |
| # First label is `sky`. | |
| ground_truth_track = ( | |
| np.array([[0, 1, 1, 1, 1]]) + | |
| np.array([[1, 0, 0, 0, 0]]) * max_instances_per_category) | |
| with self.subTest('Example 9'): | |
| predicted_track = np.array([[1, 1, 1, 1, 1]]) | |
| _compute_metric_and_compare(stq_metric, ground_truth_track, | |
| predicted_track, [0.56568542, 0.8, 0.4]) | |
| with self.subTest('Example 10'): | |
| predicted_track = np.array([[2, 2, 2, 1, 1]]) | |
| _compute_metric_and_compare(stq_metric, ground_truth_track, | |
| predicted_track, | |
| [0.42426407, 0.45, 0.4]) | |
| with self.subTest('Example 11'): | |
| predicted_track = ( | |
| np.array([[2, 2, 0, 1, 1]]) + | |
| np.array([[0, 0, 1, 0, 0]]) * max_instances_per_category) | |
| _compute_metric_and_compare(stq_metric, ground_truth_track, | |
| predicted_track, | |
| [0.3, 0.3, 0.3]) | |
| if __name__ == '__main__': | |
| tf.test.main() | |