Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2021 The Deeplab2 Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Tests for model.builder.""" | |
| import os | |
| from absl.testing import parameterized | |
| import tensorflow as tf | |
| from google.protobuf import text_format | |
| from deeplab2 import config_pb2 | |
| from deeplab2.model import builder | |
| from deeplab2.model.decoder import motion_deeplab_decoder | |
| from deeplab2.model.encoder import axial_resnet_instances | |
| from deeplab2.model.encoder import mobilenet | |
| # resources dependency | |
| _CONFIG_PATH = 'deeplab2/configs/example' | |
| def _read_proto_file(filename, proto): | |
| filename = filename # OSS: removed internal filename loading. | |
| with tf.io.gfile.GFile(filename, 'r') as proto_file: | |
| return text_format.ParseLines(proto_file, proto) | |
| class BuilderTest(tf.test.TestCase, parameterized.TestCase): | |
| def test_resnet50_encoder_creation(self): | |
| backbone_options = config_pb2.ModelOptions.BackboneOptions( | |
| name='resnet50', output_stride=32) | |
| encoder = builder.create_encoder( | |
| backbone_options, | |
| tf.keras.layers.experimental.SyncBatchNormalization) | |
| self.assertIsInstance(encoder, axial_resnet_instances.ResNet50) | |
| def test_mobilenet_encoder_creation(self, model_name): | |
| backbone_options = config_pb2.ModelOptions.BackboneOptions( | |
| name=model_name, use_squeeze_and_excite=True, output_stride=32) | |
| encoder = builder.create_encoder( | |
| backbone_options, | |
| tf.keras.layers.experimental.SyncBatchNormalization) | |
| self.assertIsInstance(encoder, mobilenet.MobileNet) | |
| def test_resnet_encoder_creation(self): | |
| backbone_options = config_pb2.ModelOptions.BackboneOptions( | |
| name='max_deeplab_s', output_stride=32) | |
| encoder = builder.create_resnet_encoder( | |
| backbone_options, | |
| bn_layer=tf.keras.layers.experimental.SyncBatchNormalization) | |
| self.assertIsInstance(encoder, axial_resnet_instances.MaXDeepLabS) | |
| def test_decoder_creation(self): | |
| proto_filename = os.path.join( | |
| _CONFIG_PATH, 'example_kitti-step_motion_deeplab.textproto') | |
| model_options = _read_proto_file(proto_filename, config_pb2.ModelOptions()) | |
| motion_decoder = builder.create_decoder( | |
| model_options, tf.keras.layers.experimental.SyncBatchNormalization, | |
| ignore_label=255) | |
| self.assertIsInstance(motion_decoder, | |
| motion_deeplab_decoder.MotionDeepLabDecoder) | |
| if __name__ == '__main__': | |
| tf.test.main() | |