Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2021 The Deeplab2 Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Tests for axial_resnet_instances.""" | |
| import os | |
| from absl import flags | |
| from absl.testing import parameterized | |
| import numpy as np | |
| import tensorflow as tf | |
| from deeplab2.model import test_utils | |
| from deeplab2.model.encoder import axial_resnet_instances | |
| FLAGS = flags.FLAGS | |
| class AxialResnetInstancesTest(tf.test.TestCase, parameterized.TestCase): | |
| # The parameter count does not include the classification head. | |
| def test_model_output_shape_and_num_params( | |
| self, model_name, backbone_layer_multiplier, expected_num_params): | |
| model = axial_resnet_instances.get_model( | |
| model_name, | |
| backbone_layer_multiplier=backbone_layer_multiplier, | |
| bn_layer=tf.keras.layers.BatchNormalization, | |
| conv_kernel_weight_decay=0.0001) | |
| output = model(tf.keras.Input(shape=(224, 224, 3))) | |
| if model_name in ('axial_resnet_s', 'axial_deeplab_s'): | |
| self.assertListEqual(output['res5'].get_shape().as_list(), | |
| [None, 14, 14, 1024]) | |
| else: | |
| self.assertListEqual(output['res5'].get_shape().as_list(), | |
| [None, 14, 14, 2048]) | |
| num_params = np.sum( | |
| [np.prod(v.get_shape().as_list()) for v in model.trainable_weights]) | |
| self.assertEqual(num_params, expected_num_params) | |
| def test_resnet50_variable_checkpoint_names(self): | |
| model = axial_resnet_instances.get_model( | |
| 'resnet50', | |
| bn_layer=tf.keras.layers.BatchNormalization, | |
| conv_kernel_weight_decay=0.0001) | |
| model(tf.keras.Input(shape=(224, 224, 3))) | |
| variable_names = [w.name for w in model.trainable_weights] | |
| test_variable_name = 'resnet50/stage4/block6/conv3_bn/batch_norm/beta:0' | |
| self.assertIn(test_variable_name, variable_names) | |
| temp_dir = self.create_tempdir() | |
| temp_path = os.path.join(temp_dir, 'ckpt') | |
| checkpoint = tf.train.Checkpoint(encoder=model) | |
| checkpoint.save(temp_path) | |
| latest_checkpoint = tf.train.latest_checkpoint(temp_dir) | |
| reader = tf.train.load_checkpoint(latest_checkpoint) | |
| checkpoint_names = reader.get_variable_to_shape_map().keys() | |
| test_checkpoint_name = 'encoder/_stage4/_block6/_conv3_bn/_batch_norm/gamma/.ATTRIBUTES/VARIABLE_VALUE' | |
| self.assertIn(test_checkpoint_name, checkpoint_names) | |
| def test_max_deeplab_s_output_shape_and_num_params(self): | |
| model = axial_resnet_instances.get_model( | |
| 'max_deeplab_s', | |
| bn_layer=tf.keras.layers.BatchNormalization, | |
| conv_kernel_weight_decay=0.0001) | |
| endpoints = model(tf.keras.Input(shape=(65, 65, 3))) | |
| self.assertListEqual(endpoints['backbone_output'].get_shape().as_list(), | |
| [None, 5, 5, 2048]) | |
| self.assertListEqual( | |
| endpoints['transformer_class_feature'].get_shape().as_list(), | |
| [None, 128, 256]) | |
| self.assertListEqual( | |
| endpoints['transformer_mask_feature'].get_shape().as_list(), | |
| [None, 128, 256]) | |
| self.assertListEqual(endpoints['feature_panoptic'].get_shape().as_list(), | |
| [None, 17, 17, 256]) | |
| self.assertListEqual(endpoints['feature_semantic'].get_shape().as_list(), | |
| [None, 5, 5, 2048]) | |
| num_params = np.sum( | |
| [np.prod(v.get_shape().as_list()) for v in model.trainable_weights]) | |
| self.assertEqual(num_params, 61726624) | |
| def test_max_deeplab_l_output_shape_and_num_params(self): | |
| model = axial_resnet_instances.get_model( | |
| 'max_deeplab_l', | |
| bn_layer=tf.keras.layers.BatchNormalization, | |
| conv_kernel_weight_decay=0.0001) | |
| endpoints = model(tf.keras.Input(shape=(65, 65, 3))) | |
| self.assertListEqual(endpoints['backbone_output'].get_shape().as_list(), | |
| [None, 5, 5, 2048]) | |
| self.assertListEqual( | |
| endpoints['transformer_class_feature'].get_shape().as_list(), | |
| [None, 128, 512]) | |
| self.assertListEqual( | |
| endpoints['transformer_mask_feature'].get_shape().as_list(), | |
| [None, 128, 512]) | |
| self.assertListEqual(endpoints['feature_panoptic'].get_shape().as_list(), | |
| [None, 17, 17, 256]) | |
| self.assertListEqual(endpoints['feature_semantic'].get_shape().as_list(), | |
| [None, 17, 17, 256]) | |
| num_params = np.sum( | |
| [np.prod(v.get_shape().as_list()) for v in model.trainable_weights]) | |
| self.assertEqual(num_params, 450523232) | |
| def test_global_attention_absolute_positional_encoding_names(self): | |
| model = axial_resnet_instances.get_model( | |
| 'max_deeplab_s_backbone', | |
| block_group_config={'use_global_beyond_stride': 16, | |
| 'positional_encoding_type': '1D', | |
| 'axial_layer_config': { | |
| 'use_query_rpe_similarity': False, | |
| 'use_key_rpe_similarity': False, | |
| 'retrieve_value_rpe': False}}, | |
| bn_layer=tf.keras.layers.BatchNormalization, | |
| conv_kernel_weight_decay=0.0001) | |
| model(tf.keras.Input(shape=(224, 224, 3))) | |
| variable_names = [w.name for w in model.trainable_weights] | |
| test_variable_name1 = 'max_deeplab_s_backbone/stage4/add_absolute_positional_encoding/height_axis_embeddings:0' | |
| test_variable_name2 = 'max_deeplab_s_backbone/stage4/block2/attention/global/qkv_kernel:0' | |
| self.assertIn(test_variable_name1, variable_names) | |
| self.assertIn(test_variable_name2, variable_names) | |
| def test_model_atrous_consistency_with_output_stride_four( | |
| self, model_name, backbone_layer_multiplier, output_stride): | |
| tf.random.set_seed(0) | |
| # Create the input. | |
| pixel_inputs = test_utils.create_test_input(1, 225, 225, 3) | |
| # Create the model and the weights. | |
| model_1 = axial_resnet_instances.get_model( | |
| model_name, | |
| backbone_layer_multiplier=backbone_layer_multiplier, | |
| bn_layer=tf.keras.layers.BatchNormalization, | |
| conv_kernel_weight_decay=0.0001, | |
| output_stride=4) | |
| # Create the weights. | |
| model_1(pixel_inputs, training=False) | |
| # Set the batch norm gamma as non-zero so that the 3x3 convolution affects | |
| # the output. | |
| for weight in model_1.trainable_weights: | |
| if '/gamma:0' in weight.name: | |
| weight.assign(tf.ones_like(weight)) | |
| # Dense feature extraction followed by subsampling. | |
| pixel_outputs = model_1(pixel_inputs, training=False)['res5'] | |
| downsampling_stride = output_stride // 4 | |
| expected = pixel_outputs[:, ::downsampling_stride, ::downsampling_stride, :] | |
| # Feature extraction at the nominal network rate. | |
| model_2 = axial_resnet_instances.get_model( | |
| model_name, | |
| backbone_layer_multiplier=backbone_layer_multiplier, | |
| bn_layer=tf.keras.layers.BatchNormalization, | |
| conv_kernel_weight_decay=0.0001, | |
| output_stride=output_stride) | |
| # Create the weights. | |
| model_2(pixel_inputs, training=False) | |
| # Make the two networks use the same weights. | |
| model_2.set_weights(model_1.get_weights()) | |
| output = model_2(pixel_inputs, training=False)['res5'] | |
| # Normalize the outputs. Since we set batch_norm gamma to 1, the output | |
| # activations can explode to a large standard deviation, which sometimes | |
| # cause numerical errors beyond the tolerances. | |
| normalizing_factor = tf.math.reduce_std(expected) | |
| # Compare normalized outputs. | |
| self.assertAllClose(output / normalizing_factor, | |
| expected / normalizing_factor, | |
| atol=1e-4, rtol=1e-4) | |
| def test_model_export(self, model_name): | |
| model = axial_resnet_instances.get_model( | |
| model_name, | |
| output_stride=16, | |
| backbone_layer_multiplier=1.0, | |
| bn_layer=tf.keras.layers.BatchNormalization, | |
| conv_kernel_weight_decay=0.0001, | |
| # Disable drop path as it is not compatible with model exporting. | |
| block_group_config={'drop_path_keep_prob': 1.0}) | |
| model(tf.keras.Input([257, 257, 3], batch_size=1), training=False) | |
| export_dir = os.path.join( | |
| FLAGS.test_tmpdir, 'test_model_export', model_name) | |
| model.save(export_dir) | |
| if __name__ == '__main__': | |
| tf.test.main() | |