Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2021 The Deeplab2 Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Tests for axial_resnet.""" | |
| import numpy as np | |
| import tensorflow as tf | |
| from deeplab2.model.encoder import axial_resnet | |
| class AxialResNetTest(tf.test.TestCase): | |
| def test_axial_resnet_correct_output_shape(self): | |
| model = axial_resnet.AxialResNet('max_deeplab_s') | |
| endpoints = model(tf.zeros([2, 65, 65, 3]), training=False) | |
| self.assertListEqual(endpoints['backbone_output'].get_shape().as_list(), | |
| [2, 5, 5, 2048]) | |
| self.assertListEqual( | |
| endpoints['transformer_class_feature'].get_shape().as_list(), | |
| [2, 128, 256]) | |
| self.assertListEqual( | |
| endpoints['transformer_mask_feature'].get_shape().as_list(), | |
| [2, 128, 256]) | |
| self.assertListEqual(endpoints['feature_panoptic'].get_shape().as_list(), | |
| [2, 17, 17, 256]) | |
| self.assertListEqual(endpoints['feature_semantic'].get_shape().as_list(), | |
| [2, 5, 5, 2048]) | |
| num_params = np.sum( | |
| [np.prod(v.get_shape().as_list()) for v in model.trainable_weights]) | |
| self.assertEqual(num_params, 61726624) | |
| if __name__ == '__main__': | |
| tf.test.main() | |