Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2021 The Deeplab2 Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Tests for axial_layers.""" | |
| import tensorflow as tf | |
| from deeplab2.model.layers import axial_layers | |
| class AxialLayersTest(tf.test.TestCase): | |
| def test_default_axial_attention_layer_output_shape(self): | |
| layer = axial_layers.AxialAttention() | |
| output = layer(tf.zeros([10, 5, 32])) | |
| self.assertListEqual(output.get_shape().as_list(), [10, 5, 1024]) | |
| def test_axial_attention_2d_layer_output_shape(self): | |
| layer = axial_layers.AxialAttention2D() | |
| output = layer(tf.zeros([2, 5, 5, 32])) | |
| self.assertListEqual(output.get_shape().as_list(), [2, 5, 5, 1024]) | |
| def test_change_filters_output_shape(self): | |
| layer = axial_layers.AxialAttention2D(filters=32) | |
| output = layer(tf.zeros([2, 5, 5, 32])) | |
| self.assertListEqual(output.get_shape().as_list(), [2, 5, 5, 64]) | |
| def test_value_expansion_output_shape(self): | |
| layer = axial_layers.AxialAttention2D(value_expansion=1) | |
| output = layer(tf.zeros([2, 5, 5, 32])) | |
| self.assertListEqual(output.get_shape().as_list(), [2, 5, 5, 512]) | |
| def test_global_attention_output_shape(self): | |
| layer = axial_layers.GlobalAttention2D() | |
| output = layer(tf.zeros([2, 5, 5, 32])) | |
| self.assertListEqual(output.get_shape().as_list(), [2, 5, 5, 1024]) | |
| def test_stride_two_output_shape(self): | |
| layer = axial_layers.AxialAttention2D(strides=2) | |
| output = layer(tf.zeros([2, 5, 5, 32])) | |
| self.assertListEqual(output.get_shape().as_list(), [2, 3, 3, 1024]) | |
| if __name__ == '__main__': | |
| tf.test.main() | |