Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -17,16 +17,57 @@
|
|
| 17 |
# st.write(summarizer(t1))
|
| 18 |
|
| 19 |
#from transformers import AutoTokenizer, AutoModel
|
| 20 |
-
import streamlit as st
|
| 21 |
|
| 22 |
#tokenizer = AutoTokenizer.from_pretrained("llmware/industry-bert-insurance-v0.1")
|
| 23 |
|
| 24 |
-
#model = AutoModel.from_pretrained("llmware/industry-bert-insurance-v0.1")
|
| 25 |
-
# Use a pipeline as a high-level helper
|
| 26 |
-
from transformers import pipeline
|
| 27 |
|
| 28 |
-
#pipe = pipeline("feature-extraction")
|
| 29 |
|
| 30 |
-
t=st.text_input("Enter the Text")
|
| 31 |
-
pipe = pipeline("summarization")
|
| 32 |
-
st.write(pipe(t))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
# st.write(summarizer(t1))
|
| 18 |
|
| 19 |
#from transformers import AutoTokenizer, AutoModel
|
| 20 |
+
# import streamlit as st
|
| 21 |
|
| 22 |
#tokenizer = AutoTokenizer.from_pretrained("llmware/industry-bert-insurance-v0.1")
|
| 23 |
|
| 24 |
+
# #model = AutoModel.from_pretrained("llmware/industry-bert-insurance-v0.1")
|
| 25 |
+
# # Use a pipeline as a high-level helper
|
| 26 |
+
# from transformers import pipeline
|
| 27 |
|
| 28 |
+
# #pipe = pipeline("feature-extraction")
|
| 29 |
|
| 30 |
+
# t=st.text_input("Enter the Text")
|
| 31 |
+
# pipe = pipeline("summarization")
|
| 32 |
+
# st.write(pipe(t))
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
import pandas as pd
|
| 36 |
+
import numpy as np
|
| 37 |
+
from ydata_synthetic.synthesizers.regular import RegularSynthesizer
|
| 38 |
+
from ydata_synthetic.synthesizers import ModelParameters, TrainParameters
|
| 39 |
+
import streamlit as st
|
| 40 |
+
from os import getcwd
|
| 41 |
+
text_file=st.file_uploader("Upload the Data File")
|
| 42 |
+
st.write("-------------------------")
|
| 43 |
+
|
| 44 |
+
if text_file is not None:
|
| 45 |
+
df=pd.read_csv(text_file)
|
| 46 |
+
dd_list=df.columns
|
| 47 |
+
cat_cols=st.multiselect("Select the Categorical Columns",dd_list)
|
| 48 |
+
num_cols=st.multiselect("Select the Numerical Columns",dd_list)
|
| 49 |
+
Output_file=st.text_input('Enter Output File Name')
|
| 50 |
+
s=st.number_input('Enter the Sample Size',1000)
|
| 51 |
+
OP=Output_file + '.csv'
|
| 52 |
+
sub=st.button('Submit')
|
| 53 |
+
if sub:
|
| 54 |
+
batch_size = 50
|
| 55 |
+
epochs = 3
|
| 56 |
+
learning_rate = 2e-4
|
| 57 |
+
beta_1 = 0.5
|
| 58 |
+
beta_2 = 0.9
|
| 59 |
+
|
| 60 |
+
ctgan_args = ModelParameters(batch_size=batch_size,
|
| 61 |
+
lr=learning_rate,
|
| 62 |
+
betas=(beta_1, beta_2))
|
| 63 |
+
|
| 64 |
+
train_args = TrainParameters(epochs=epochs)
|
| 65 |
+
synth = RegularSynthesizer(modelname='ctgan', model_parameters=ctgan_args)
|
| 66 |
+
synth.fit(data=df, train_arguments=train_args, num_cols=num_cols, cat_cols=cat_cols)
|
| 67 |
+
df_syn = synth.sample(s)
|
| 68 |
+
df_syn.to_csv(OP)
|
| 69 |
+
c=getcwd()
|
| 70 |
+
c=c + '/' + OP
|
| 71 |
+
with open(c,"rb") as file:
|
| 72 |
+
st.download_button(label=':blue[Download]',data=file,file_name=OP,mime="image/png")
|
| 73 |
+
st.success("Thanks for using the app !!!")
|