Spaces:
Build error
Build error
| from datasets import load_dataset | |
| from transformers import pipeline | |
| #loading the dataset | |
| xsum_dataset = load_dataset( | |
| "xsum", | |
| version="1.2.0", | |
| cache_dir='/Documents/Huggin_Face/data' | |
| ) # Note: We specify cache_dir to use predownloaded data. | |
| xsum_dataset | |
| # The printed representation of this object shows the `num_rows` | |
| # of each dataset split. | |
| summarizer = pipeline( | |
| task="summarization", | |
| model="t5-small", | |
| min_length=20, | |
| max_length=40, | |
| truncation=True, | |
| model_kwargs={"cache_dir": '/Documents/Huggin_Face/'}, | |
| ) # Note: We specify cache_dir to use predownloaded models. | |
| def input_func(input_text): | |
| input_text = input("Enter the text you want to summarize: ") | |
| # Generate the summary | |
| summary = summarizer(input_text, max_length=10000, min_length=30, do_sample=False)[0]['summary_text'] | |
| bullet_points = summary.split(". ") | |
| for point in bullet_points: | |
| print(f"- {point}") | |
| # Print the generated summary | |
| return ("Summary:", summary) | |
| iface = gr.Interface(fn = input_func, | |
| inputs = [ | |
| gr.inputs.Textbox(lines=5, placeholder="Enter your text here...", label="input_text")], | |
| outputs="text", | |
| ) | |
| iface.launch() |