File size: 7,403 Bytes
3cb2cee
 
 
 
 
 
 
 
 
 
 
 
 
 
15681d2
 
 
 
 
 
 
51bbb25
15681d2
 
 
3cb2cee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15681d2
 
3cb2cee
 
15681d2
3cb2cee
 
 
 
15681d2
fb5663b
15681d2
 
 
8c2f3b3
 
 
 
 
15681d2
8c2f3b3
 
 
 
 
15681d2
 
accdb59
8c2f3b3
 
 
 
15681d2
 
 
 
 
 
 
8c2f3b3
4beb509
15681d2
 
 
8c2f3b3
15681d2
 
 
9cf8b3c
15681d2
8c2f3b3
 
 
 
 
 
3cb2cee
8c2f3b3
90546b3
8c2f3b3
 
15681d2
a96e7fc
15681d2
8c2f3b3
 
 
15681d2
 
8c2f3b3
15681d2
8c2f3b3
 
3cb2cee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15681d2
3cb2cee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15681d2
3cb2cee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15681d2
 
3cb2cee
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
"""
Stable Audio Open Gradio Inference App for HuggingFace Spaces

This app provides a simple interface for generating high-quality instrumental music 
using Stable Audio Open with the SAO-Instrumental-Finetune model.

Designed to be used as a remote computation tool for WeaveMuse.

Architecture:
- Stable Audio model is loaded OUTSIDE the GPU-decorated function
- Only the inference itself runs on GPU (cost-efficient for HF Spaces Zero GPU)
- Model initialization happens once at startup
"""

import torch
import torchaudio
from einops import rearrange
import gradio as gr
import spaces
import os
import uuid
import numpy as np

# Importing the model-related functions
from stable_audio_tools.inference.generation import generate_diffusion_cond
import json
from stable_audio_tools.models.factory import create_model_from_config
from stable_audio_tools.models.utils import load_ckpt_state_dict

from huggingface_hub import hf_hub_download


def get_pretrained_model(name="santifiorino/SAO-Instrumental-Finetune"):
    
    model_config_path = hf_hub_download(name, filename="model_config.json", repo_type='model')

    with open(model_config_path) as f:
        model_config = json.load(f)

    model = create_model_from_config(model_config)

    # Try to download the model.safetensors file first, if it doesn't exist, download the model.ckpt file
    try:
        model_ckpt_path = hf_hub_download(name, filename="model.safetensors", repo_type='model')
    except Exception as e:        
        model_ckpt_path = hf_hub_download(name, filename="SAO_Instrumental_Finetune.ckpt", repo_type='model')
    model.load_state_dict(load_ckpt_state_dict(model_ckpt_path))

    return model, model_config

# Load the model outside of the GPU-decorated function


def load_model():
    """
    Load the Stable Audio model outside GPU function.
    This is called once at startup to download and cache the model.
    """
    print("Loading model...")
    model, model_config = get_pretrained_model("santifiorino/SAO-Instrumental-Finetune")
    print("Model loaded successfully.")
    return model, model_config

import numpy as np
import gradio as gr
import spaces
import torch
from einops import rearrange

# --- load once, keep global (don’t reload inside GPU fn) ---
model, model_config = load_model()
model = model.to("cuda")
SAMPLE_RATE = model_config["sample_rate"]
SAMPLE_SIZE  = model_config["sample_size"]


@spaces.GPU()
def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7):
    """
    Returns (sample_rate, waveform) so the API returns raw audio, not a file.
    """    

    conditioning = [{
        "prompt": prompt,
        "seconds_start": 0,
        "seconds_total": seconds_total
    }]

    audio = generate_diffusion_cond(
        model,
        steps=steps,
        cfg_scale=cfg_scale,
        conditioning=conditioning,
        sample_size=SAMPLE_SIZE,
        sigma_min=0.3,
        sigma_max=500,
        sampler_type="dpmpp-3m-sde",
        device="cuda",
    )
    # [B, C, N] -> [C, B*N] -> [N, C] for Gradio
    audio = rearrange(audio, "b c n -> c (b n)")           # (C, T)
    audio = audio.to(torch.float32)
    audio = audio / (audio.abs().max() + 1e-12)            # peak normalize
    audio = (audio.clamp(-1, 1) * 32767).to(torch.int16)   # int16
    audio_np = audio.cpu().numpy().T                        # (T, C)

    return SAMPLE_RATE, audio_np

# You no longer need save_audio_to_file() or inf_function()
# Wire the function directly and keep output as numpy (no filepaths!)
interface = gr.Interface(
    fn=generate_audio,
    inputs=[
        gr.Textbox(label="Prompt",
                   placeholder="Describe the instrumental music...",
                   value="Upbeat rock guitar with drums and bass"),
        gr.Slider(0, 47, value=30, label="Duration in Seconds"),
        gr.Slider(10, 150, value=100, step=10, label="Number of Diffusion Steps"),
        gr.Slider(1, 15, value=7, step=0.1, label="CFG Scale"),
    ],
    outputs=gr.Audio(type="numpy", format="wav", label="Generated Music"),
    api_name="generate",   # your API endpoint will be /generate (default is /predict)
    title="🎸 Stable Audio Instrumental Generator",
    description="""
    Generate high-quality instrumental music at 44.1kHz from text prompts using the SAO-Instrumental-Finetune model.
    
    **Features:**
    - 🎹 Piano, guitar, drums, bass, and orchestral instruments
    - 🎵 Various musical genres and styles
    - ⚡ High-quality stereo audio
    - 🎼 Perfect for music composition and production
    
    **Tips:**
    - Be specific about instruments, tempo, and mood
    - Higher steps = better quality (recommended: 100-120)
    - CFG Scale 7-10 works well for most prompts
    """,
    examples=[
        [
            "Energetic rock guitar riff with powerful drums and bass",
            30,
            100,
            7,
        ],
        [
            "Smooth jazz piano trio with upright bass and brushed drums",
            35,
            110,
            8,
        ],
        [
            "Epic orchestral strings and brass with cinematic percussion",
            45,
            120,
            10,
        ],
        [
            "Funky electric bass groove with rhythm guitar and tight drums",
            30,
            100,
            7,
        ],
        [
            "Acoustic guitar fingerpicking with soft percussion",
            40,
            110,
            6,
        ],
        [
            "Electronic synthesizer pads with ambient textures and subtle beats",
            35,
            100,
            7.5,
        ],
        [
            "Classical piano solo with expressive dynamics and sustain pedal",
            30,
            110,
            8,
        ],
        [
            "Blues guitar solo with bending notes over a shuffle rhythm section",
            30,
            100,
            7,
        ],
        [
            "Latin percussion ensemble with congas, bongos, and timbales",
            30,
            100,
            7,
        ],
        [
            "Rock beat played in a treated studio, session drumming on an acoustic kit",
            30,
            100,
            7,
        ]
    ],
    article="""
    ---
    ### About SAO-Instrumental-Finetune
    
    This model is a fine-tuned version of **Stable Audio Open 1.0** specifically trained for instrumental music generation.
    
    **Capabilities:**
    - 🎸 **Guitar**: Acoustic, electric, classical, jazz, rock
    - 🥁 **Drums**: Rock, jazz, electronic, orchestral percussion
    - 🎹 **Piano**: Classical, jazz, modern, ambient
    - � **Orchestral**: Strings, brass, woodwinds
    - � **Other**: Bass, synthesizers, ethnic instruments
    
    **Technical Details:**
    - Model: SAO-Instrumental-Finetune (based on Stable Audio Open 1.0)
    - Sample Rate: 44.1kHz (CD quality)
    - Max Duration: 47 seconds
    - Architecture: Latent diffusion model with conditioning
    
    **Integration:**
    This space is designed to work with **WeaveMuse** for AI-assisted music composition.
    Use the API endpoint for programmatic access in your music production workflows.
    
    ---
    
    *Powered by [Stability AI](https://stability.ai/) and [WeaveMuse](https://github.com/manoskary/weavemuse)*
    """
)

# Launch the Interface
if __name__ == "__main__":
    interface.launch()