Spaces:
Running
Running
Commit
·
b698ace
1
Parent(s):
edb6fcc
update
Browse files- models/HybridGNet2IGSC.py +299 -1
- requirements.txt +1 -0
- utils/segmentation.py +6 -111
models/HybridGNet2IGSC.py
CHANGED
|
@@ -4,6 +4,110 @@ import torch.nn.functional as F
|
|
| 4 |
from models.modelUtils import ChebConv, Pool, residualBlock
|
| 5 |
import torchvision.ops.roi_align as roi_align
|
| 6 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
class EncoderConv(nn.Module):
|
| 9 |
def __init__(self, latents = 64, hw = 32):
|
|
@@ -205,4 +309,198 @@ class Hybrid(nn.Module):
|
|
| 205 |
else:
|
| 206 |
z = self.mu
|
| 207 |
|
| 208 |
-
return self.decode(z, conv6, conv5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from models.modelUtils import ChebConv, Pool, residualBlock
|
| 5 |
import torchvision.ops.roi_align as roi_align
|
| 6 |
import numpy as np
|
| 7 |
+
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
|
| 8 |
+
import json
|
| 9 |
+
import scipy.sparse as sp
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def scipy_to_torch_sparse(scp_matrix):
|
| 13 |
+
values = scp_matrix.data
|
| 14 |
+
indices = np.vstack((scp_matrix.row, scp_matrix.col))
|
| 15 |
+
i = torch.LongTensor(indices)
|
| 16 |
+
v = torch.FloatTensor(values)
|
| 17 |
+
shape = scp_matrix.shape
|
| 18 |
+
|
| 19 |
+
sparse_tensor = torch.sparse.FloatTensor(i, v, torch.Size(shape))
|
| 20 |
+
return sparse_tensor
|
| 21 |
+
|
| 22 |
+
## Adjacency Matrix
|
| 23 |
+
def mOrgan(N):
|
| 24 |
+
sub = np.zeros([N, N])
|
| 25 |
+
for i in range(0, N):
|
| 26 |
+
sub[i, i-1] = 1
|
| 27 |
+
sub[i, (i+1)%N] = 1
|
| 28 |
+
return sub
|
| 29 |
+
|
| 30 |
+
## Downsampling Matrix
|
| 31 |
+
def mOrganD(N):
|
| 32 |
+
N2 = int(np.ceil(N/2))
|
| 33 |
+
sub = np.zeros([N2, N])
|
| 34 |
+
|
| 35 |
+
for i in range(0, N2):
|
| 36 |
+
if (2*i+1) == N:
|
| 37 |
+
sub[i, 2*i] = 1
|
| 38 |
+
else:
|
| 39 |
+
sub[i, 2*i] = 1/2
|
| 40 |
+
sub[i, 2*i+1] = 1/2
|
| 41 |
+
|
| 42 |
+
return sub
|
| 43 |
+
|
| 44 |
+
def mOrganU(N):
|
| 45 |
+
N2 = int(np.ceil(N/2))
|
| 46 |
+
sub = np.zeros([N, N2])
|
| 47 |
+
|
| 48 |
+
for i in range(0, N):
|
| 49 |
+
if i % 2 == 0:
|
| 50 |
+
sub[i, i//2] = 1
|
| 51 |
+
else:
|
| 52 |
+
sub[i, i//2] = 1/2
|
| 53 |
+
sub[i, (i//2 + 1) % N2] = 1/2
|
| 54 |
+
|
| 55 |
+
return sub
|
| 56 |
+
|
| 57 |
+
def genMatrixesLungsHeart():
|
| 58 |
+
RLUNG = 44
|
| 59 |
+
LLUNG = 50
|
| 60 |
+
HEART = 26
|
| 61 |
+
|
| 62 |
+
Asub1 = mOrgan(RLUNG)
|
| 63 |
+
Asub2 = mOrgan(LLUNG)
|
| 64 |
+
Asub3 = mOrgan(HEART)
|
| 65 |
+
|
| 66 |
+
ADsub1 = mOrgan(int(np.ceil(RLUNG / 2)))
|
| 67 |
+
ADsub2 = mOrgan(int(np.ceil(LLUNG / 2)))
|
| 68 |
+
ADsub3 = mOrgan(int(np.ceil(HEART / 2)))
|
| 69 |
+
|
| 70 |
+
Dsub1 = mOrganD(RLUNG)
|
| 71 |
+
Dsub2 = mOrganD(LLUNG)
|
| 72 |
+
Dsub3 = mOrganD(HEART)
|
| 73 |
+
|
| 74 |
+
Usub1 = mOrganU(RLUNG)
|
| 75 |
+
Usub2 = mOrganU(LLUNG)
|
| 76 |
+
Usub3 = mOrganU(HEART)
|
| 77 |
+
|
| 78 |
+
p1 = RLUNG
|
| 79 |
+
p2 = p1 + LLUNG
|
| 80 |
+
p3 = p2 + HEART
|
| 81 |
+
|
| 82 |
+
p1_ = int(np.ceil(RLUNG / 2))
|
| 83 |
+
p2_ = p1_ + int(np.ceil(LLUNG / 2))
|
| 84 |
+
p3_ = p2_ + int(np.ceil(HEART / 2))
|
| 85 |
+
|
| 86 |
+
A = np.zeros([p3, p3])
|
| 87 |
+
|
| 88 |
+
A[:p1, :p1] = Asub1
|
| 89 |
+
A[p1:p2, p1:p2] = Asub2
|
| 90 |
+
A[p2:p3, p2:p3] = Asub3
|
| 91 |
+
|
| 92 |
+
AD = np.zeros([p3_, p3_])
|
| 93 |
+
|
| 94 |
+
AD[:p1_, :p1_] = ADsub1
|
| 95 |
+
AD[p1_:p2_, p1_:p2_] = ADsub2
|
| 96 |
+
AD[p2_:p3_, p2_:p3_] = ADsub3
|
| 97 |
+
|
| 98 |
+
D = np.zeros([p3_, p3])
|
| 99 |
+
|
| 100 |
+
D[:p1_, :p1] = Dsub1
|
| 101 |
+
D[p1_:p2_, p1:p2] = Dsub2
|
| 102 |
+
D[p2_:p3_, p2:p3] = Dsub3
|
| 103 |
+
|
| 104 |
+
U = np.zeros([p3, p3_])
|
| 105 |
+
|
| 106 |
+
U[:p1, :p1_] = Usub1
|
| 107 |
+
U[p1:p2, p1_:p2_] = Usub2
|
| 108 |
+
U[p2:p3, p2_:p3_] = Usub3
|
| 109 |
+
|
| 110 |
+
return A, AD, D, U
|
| 111 |
|
| 112 |
class EncoderConv(nn.Module):
|
| 113 |
def __init__(self, latents = 64, hw = 32):
|
|
|
|
| 309 |
else:
|
| 310 |
z = self.mu
|
| 311 |
|
| 312 |
+
return self.decode(z, conv6, conv5)
|
| 313 |
+
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
class HybridNoSkip(nn.Module):
|
| 317 |
+
def __init__(self, config, downsample_matrices, upsample_matrices, adjacency_matrices):
|
| 318 |
+
super(HybridNoSkip, self).__init__()
|
| 319 |
+
|
| 320 |
+
hw = config['inputsize'] // 32
|
| 321 |
+
self.eval_sampling = config['eval_sampling']
|
| 322 |
+
self.z = config['latents']
|
| 323 |
+
self.encoder = EncoderConv(latents = self.z, hw = hw)
|
| 324 |
+
|
| 325 |
+
self.downsample_matrices = downsample_matrices
|
| 326 |
+
self.upsample_matrices = upsample_matrices
|
| 327 |
+
self.adjacency_matrices = adjacency_matrices
|
| 328 |
+
self.kld_weight = 1e-5
|
| 329 |
+
|
| 330 |
+
n_nodes = config['n_nodes']
|
| 331 |
+
self.filters = config['filters']
|
| 332 |
+
self.K = 6
|
| 333 |
+
|
| 334 |
+
# Genero la capa fully connected del decoder
|
| 335 |
+
outshape = self.filters[-1] * n_nodes[-1]
|
| 336 |
+
self.dec_lin = torch.nn.Linear(self.z, outshape)
|
| 337 |
+
|
| 338 |
+
self.normalization2u = torch.nn.InstanceNorm1d(self.filters[1])
|
| 339 |
+
self.normalization3u = torch.nn.InstanceNorm1d(self.filters[2])
|
| 340 |
+
self.normalization4u = torch.nn.InstanceNorm1d(self.filters[3])
|
| 341 |
+
self.normalization5u = torch.nn.InstanceNorm1d(self.filters[4])
|
| 342 |
+
self.normalization6u = torch.nn.InstanceNorm1d(self.filters[5])
|
| 343 |
+
|
| 344 |
+
self.graphConv_up6 = ChebConv(self.filters[6], self.filters[5], self.K)
|
| 345 |
+
self.graphConv_up5 = ChebConv(self.filters[5], self.filters[4], self.K)
|
| 346 |
+
self.graphConv_up4 = ChebConv(self.filters[4], self.filters[3], self.K)
|
| 347 |
+
self.graphConv_up3 = ChebConv(self.filters[3], self.filters[2], self.K)
|
| 348 |
+
self.graphConv_up2 = ChebConv(self.filters[2], self.filters[1], self.K)
|
| 349 |
+
|
| 350 |
+
## Out layer: Sin bias, normalization ni relu
|
| 351 |
+
self.graphConv_up1 = ChebConv(self.filters[1], self.filters[0], 1, bias = False)
|
| 352 |
+
|
| 353 |
+
self.pool = Pool()
|
| 354 |
+
|
| 355 |
+
self.reset_parameters()
|
| 356 |
+
|
| 357 |
+
def reset_parameters(self):
|
| 358 |
+
torch.nn.init.normal_(self.dec_lin.weight, 0, 0.1)
|
| 359 |
+
|
| 360 |
+
def sampling(self, mu, log_var):
|
| 361 |
+
std = torch.exp(0.5*log_var)
|
| 362 |
+
eps = torch.randn_like(std)
|
| 363 |
+
return eps.mul(std).add_(mu)
|
| 364 |
+
|
| 365 |
+
def encode(self, x):
|
| 366 |
+
mu, log_var, conv6, conv5 = self.encoder(x)
|
| 367 |
+
return mu, log_var, conv6, conv5
|
| 368 |
+
|
| 369 |
+
def decode(self, z, conv6, conv5):
|
| 370 |
+
# Decode from latent space z to reconstruct x
|
| 371 |
+
x = self.dec_lin(z)
|
| 372 |
+
x = F.relu(x)
|
| 373 |
+
x = x.reshape(x.shape[0], -1, self.filters[-1])
|
| 374 |
+
|
| 375 |
+
x = self.graphConv_up6(x, self.adjacency_matrices[5]._indices())
|
| 376 |
+
x = self.normalization6u(x)
|
| 377 |
+
x = F.relu(x)
|
| 378 |
+
|
| 379 |
+
x = self.graphConv_up5(x, self.adjacency_matrices[4]._indices())
|
| 380 |
+
x = self.normalization5u(x)
|
| 381 |
+
x = F.relu(x)
|
| 382 |
+
|
| 383 |
+
x = self.graphConv_up4(x, self.adjacency_matrices[3]._indices())
|
| 384 |
+
x = self.normalization4u(x)
|
| 385 |
+
x = F.relu(x)
|
| 386 |
+
|
| 387 |
+
x = self.pool(x, self.upsample_matrices[0])
|
| 388 |
+
|
| 389 |
+
x = self.graphConv_up3(x, self.adjacency_matrices[2]._indices())
|
| 390 |
+
x = self.normalization3u(x)
|
| 391 |
+
x = F.relu(x)
|
| 392 |
+
|
| 393 |
+
x = self.graphConv_up2(x, self.adjacency_matrices[1]._indices())
|
| 394 |
+
x = self.normalization2u(x)
|
| 395 |
+
x = F.relu(x)
|
| 396 |
+
|
| 397 |
+
x = self.graphConv_up1(x, self.adjacency_matrices[0]._indices()) # No relu and no bias
|
| 398 |
+
return x, None, None
|
| 399 |
+
|
| 400 |
+
def forward(self, x):
|
| 401 |
+
# Full forward pass: encode, sample (if training), then decode.
|
| 402 |
+
self.mu, self.log_var, conv6, conv5 = self.encode(x)
|
| 403 |
+
|
| 404 |
+
if self.training:
|
| 405 |
+
z = self.sampling(self.mu, self.log_var)
|
| 406 |
+
else:
|
| 407 |
+
z = self.mu
|
| 408 |
+
|
| 409 |
+
return self.decode(z, conv6, conv5)
|
| 410 |
+
|
| 411 |
+
|
| 412 |
+
class HybridGNetHF(nn.Module, PyTorchModelHubMixin):
|
| 413 |
+
repo_url = "https://github.com/mcosarinsky/CheXmask-U"
|
| 414 |
+
license = "mit"
|
| 415 |
+
pipeline_tag = "image-segmentation"
|
| 416 |
+
|
| 417 |
+
def __init__(self, latents=64, inputsize=1024, K=6, filters=None,
|
| 418 |
+
skip_features=32, eval_sampling=True, use_skip=True,
|
| 419 |
+
n_nodes=None, device="cpu", **kwargs):
|
| 420 |
+
super().__init__()
|
| 421 |
+
|
| 422 |
+
self.device = device
|
| 423 |
+
|
| 424 |
+
# Defaults
|
| 425 |
+
if filters is None:
|
| 426 |
+
filters = [2, 32, 32, 32, 16, 16, 16]
|
| 427 |
+
|
| 428 |
+
# Save config
|
| 429 |
+
self.config = {
|
| 430 |
+
'latents': latents,
|
| 431 |
+
'inputsize': inputsize,
|
| 432 |
+
'K': K,
|
| 433 |
+
'filters': filters,
|
| 434 |
+
'skip_features': skip_features,
|
| 435 |
+
'eval_sampling': eval_sampling,
|
| 436 |
+
'use_skip': use_skip
|
| 437 |
+
}
|
| 438 |
+
self.config.update(kwargs)
|
| 439 |
+
self.use_skip = use_skip
|
| 440 |
+
|
| 441 |
+
# ---- generate matrices ----
|
| 442 |
+
A, AD, D, U = genMatrixesLungsHeart()
|
| 443 |
+
N1, N2 = A.shape[0], AD.shape[0]
|
| 444 |
+
self.config['n_nodes'] = [N1, N1, N1, N2, N2, N2]
|
| 445 |
+
|
| 446 |
+
# ---- convert to sparse tensors and move to device ----
|
| 447 |
+
A_ = [sp.csc_matrix(A).tocoo() for _ in range(3)] + [sp.csc_matrix(AD).tocoo() for _ in range(3)]
|
| 448 |
+
D_ = [sp.csc_matrix(D).tocoo()]
|
| 449 |
+
U_ = [sp.csc_matrix(U).tocoo()]
|
| 450 |
+
|
| 451 |
+
self.A_t = [scipy_to_torch_sparse(x).to(self.device) for x in A_]
|
| 452 |
+
self.D_t = [scipy_to_torch_sparse(x).to(self.device) for x in D_]
|
| 453 |
+
self.U_t = [scipy_to_torch_sparse(x).to(self.device) for x in U_]
|
| 454 |
+
|
| 455 |
+
# ---- build model ----
|
| 456 |
+
if self.use_skip:
|
| 457 |
+
self.model = Hybrid(self.config, self.D_t, self.U_t, self.A_t)
|
| 458 |
+
else:
|
| 459 |
+
self.model = HybridNoSkip(self.config, self.D_t, self.U_t, self.A_t)
|
| 460 |
+
|
| 461 |
+
# move model parameters to device
|
| 462 |
+
self.model.to(self.device)
|
| 463 |
+
|
| 464 |
+
def forward(self, x):
|
| 465 |
+
return self.model(x)
|
| 466 |
+
|
| 467 |
+
# -----------------------------
|
| 468 |
+
# Dynamic from_pretrained from Hugging Face Hub ONLY
|
| 469 |
+
# -----------------------------
|
| 470 |
+
@classmethod
|
| 471 |
+
def from_pretrained(cls, repo_id, subfolder=None, device="cpu", **kwargs):
|
| 472 |
+
"""
|
| 473 |
+
Loads model directly from Hugging Face Hub. Does NOT use local paths.
|
| 474 |
+
"""
|
| 475 |
+
# Download config from Hub
|
| 476 |
+
config_file = hf_hub_download(
|
| 477 |
+
repo_id=repo_id,
|
| 478 |
+
filename="config.json",
|
| 479 |
+
subfolder=subfolder
|
| 480 |
+
)
|
| 481 |
+
with open(config_file, "r") as f:
|
| 482 |
+
config = json.load(f)
|
| 483 |
+
|
| 484 |
+
# Merge any additional kwargs
|
| 485 |
+
config.update(kwargs)
|
| 486 |
+
|
| 487 |
+
# Dynamically compute n_nodes
|
| 488 |
+
A, AD, D, U = genMatrixesLungsHeart()
|
| 489 |
+
N1, N2 = A.shape[0], AD.shape[0]
|
| 490 |
+
config['n_nodes'] = [N1, N1, N1, N2, N2, N2]
|
| 491 |
+
|
| 492 |
+
# Instantiate model on desired device
|
| 493 |
+
model = cls(device=device, **config)
|
| 494 |
+
|
| 495 |
+
# Download weights from Hub
|
| 496 |
+
weights_path = hf_hub_download(
|
| 497 |
+
repo_id=repo_id,
|
| 498 |
+
filename="pytorch_model.bin",
|
| 499 |
+
subfolder=subfolder
|
| 500 |
+
)
|
| 501 |
+
state_dict = torch.load(weights_path, map_location=device)
|
| 502 |
+
if not next(iter(state_dict.keys())).startswith("model."):
|
| 503 |
+
state_dict = {f"model.{k}": v for k, v in state_dict.items()}
|
| 504 |
+
model.load_state_dict(state_dict)
|
| 505 |
+
|
| 506 |
+
return model
|
requirements.txt
CHANGED
|
@@ -4,3 +4,4 @@ opencv-python==4.8.0.74
|
|
| 4 |
scipy==1.10.1
|
| 5 |
torch_geometric==2.3.0
|
| 6 |
torchvision==0.15.2
|
|
|
|
|
|
| 4 |
scipy==1.10.1
|
| 5 |
torch_geometric==2.3.0
|
| 6 |
torchvision==0.15.2
|
| 7 |
+
huggingface_hub==1.2.3
|
utils/segmentation.py
CHANGED
|
@@ -9,7 +9,7 @@ from zipfile import ZipFile
|
|
| 9 |
from .plotting import plot_side_by_side_comparison
|
| 10 |
|
| 11 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
| 12 |
-
from models.HybridGNet2IGSC import
|
| 13 |
|
| 14 |
hybrid = None
|
| 15 |
|
|
@@ -20,106 +20,6 @@ def seed_everything(seed=42):
|
|
| 20 |
if torch.cuda.is_available():
|
| 21 |
torch.cuda.manual_seed_all(seed)
|
| 22 |
|
| 23 |
-
def scipy_to_torch_sparse(scp_matrix):
|
| 24 |
-
values = scp_matrix.data
|
| 25 |
-
indices = np.vstack((scp_matrix.row, scp_matrix.col))
|
| 26 |
-
i = torch.LongTensor(indices)
|
| 27 |
-
v = torch.FloatTensor(values)
|
| 28 |
-
shape = scp_matrix.shape
|
| 29 |
-
|
| 30 |
-
sparse_tensor = torch.sparse.FloatTensor(i, v, torch.Size(shape))
|
| 31 |
-
return sparse_tensor
|
| 32 |
-
|
| 33 |
-
## Adjacency Matrix
|
| 34 |
-
def mOrgan(N):
|
| 35 |
-
sub = np.zeros([N, N])
|
| 36 |
-
for i in range(0, N):
|
| 37 |
-
sub[i, i-1] = 1
|
| 38 |
-
sub[i, (i+1)%N] = 1
|
| 39 |
-
return sub
|
| 40 |
-
|
| 41 |
-
## Downsampling Matrix
|
| 42 |
-
def mOrganD(N):
|
| 43 |
-
N2 = int(np.ceil(N/2))
|
| 44 |
-
sub = np.zeros([N2, N])
|
| 45 |
-
|
| 46 |
-
for i in range(0, N2):
|
| 47 |
-
if (2*i+1) == N:
|
| 48 |
-
sub[i, 2*i] = 1
|
| 49 |
-
else:
|
| 50 |
-
sub[i, 2*i] = 1/2
|
| 51 |
-
sub[i, 2*i+1] = 1/2
|
| 52 |
-
|
| 53 |
-
return sub
|
| 54 |
-
|
| 55 |
-
def mOrganU(N):
|
| 56 |
-
N2 = int(np.ceil(N/2))
|
| 57 |
-
sub = np.zeros([N, N2])
|
| 58 |
-
|
| 59 |
-
for i in range(0, N):
|
| 60 |
-
if i % 2 == 0:
|
| 61 |
-
sub[i, i//2] = 1
|
| 62 |
-
else:
|
| 63 |
-
sub[i, i//2] = 1/2
|
| 64 |
-
sub[i, (i//2 + 1) % N2] = 1/2
|
| 65 |
-
|
| 66 |
-
return sub
|
| 67 |
-
|
| 68 |
-
def genMatrixesLungsHeart():
|
| 69 |
-
RLUNG = 44
|
| 70 |
-
LLUNG = 50
|
| 71 |
-
HEART = 26
|
| 72 |
-
|
| 73 |
-
Asub1 = mOrgan(RLUNG)
|
| 74 |
-
Asub2 = mOrgan(LLUNG)
|
| 75 |
-
Asub3 = mOrgan(HEART)
|
| 76 |
-
|
| 77 |
-
ADsub1 = mOrgan(int(np.ceil(RLUNG / 2)))
|
| 78 |
-
ADsub2 = mOrgan(int(np.ceil(LLUNG / 2)))
|
| 79 |
-
ADsub3 = mOrgan(int(np.ceil(HEART / 2)))
|
| 80 |
-
|
| 81 |
-
Dsub1 = mOrganD(RLUNG)
|
| 82 |
-
Dsub2 = mOrganD(LLUNG)
|
| 83 |
-
Dsub3 = mOrganD(HEART)
|
| 84 |
-
|
| 85 |
-
Usub1 = mOrganU(RLUNG)
|
| 86 |
-
Usub2 = mOrganU(LLUNG)
|
| 87 |
-
Usub3 = mOrganU(HEART)
|
| 88 |
-
|
| 89 |
-
p1 = RLUNG
|
| 90 |
-
p2 = p1 + LLUNG
|
| 91 |
-
p3 = p2 + HEART
|
| 92 |
-
|
| 93 |
-
p1_ = int(np.ceil(RLUNG / 2))
|
| 94 |
-
p2_ = p1_ + int(np.ceil(LLUNG / 2))
|
| 95 |
-
p3_ = p2_ + int(np.ceil(HEART / 2))
|
| 96 |
-
|
| 97 |
-
A = np.zeros([p3, p3])
|
| 98 |
-
|
| 99 |
-
A[:p1, :p1] = Asub1
|
| 100 |
-
A[p1:p2, p1:p2] = Asub2
|
| 101 |
-
A[p2:p3, p2:p3] = Asub3
|
| 102 |
-
|
| 103 |
-
AD = np.zeros([p3_, p3_])
|
| 104 |
-
|
| 105 |
-
AD[:p1_, :p1_] = ADsub1
|
| 106 |
-
AD[p1_:p2_, p1_:p2_] = ADsub2
|
| 107 |
-
AD[p2_:p3_, p2_:p3_] = ADsub3
|
| 108 |
-
|
| 109 |
-
D = np.zeros([p3_, p3])
|
| 110 |
-
|
| 111 |
-
D[:p1_, :p1] = Dsub1
|
| 112 |
-
D[p1_:p2_, p1:p2] = Dsub2
|
| 113 |
-
D[p2_:p3_, p2:p3] = Dsub3
|
| 114 |
-
|
| 115 |
-
U = np.zeros([p3, p3_])
|
| 116 |
-
|
| 117 |
-
U[:p1, :p1_] = Usub1
|
| 118 |
-
U[p1:p2, p1_:p2_] = Usub2
|
| 119 |
-
U[p2:p3, p2_:p3_] = Usub3
|
| 120 |
-
|
| 121 |
-
return A, AD, D, U
|
| 122 |
-
|
| 123 |
def zip_files(files, output_name="complete_results.zip"):
|
| 124 |
with ZipFile(output_name, "w") as zipObj:
|
| 125 |
for file in files:
|
|
@@ -167,16 +67,11 @@ def removePreprocess(output, info):
|
|
| 167 |
|
| 168 |
def loadModel(device):
|
| 169 |
global hybrid
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
config = {'n_nodes':[N1,N1,N1,N2,N2,N2], 'latents':64, 'inputsize':1024,
|
| 176 |
-
'filters':[2,32,32,32,16,16,16], 'skip_features':32, 'eval_sampling':True}
|
| 177 |
-
A_t, D_t, U_t = ([scipy_to_torch_sparse(x).to(device) for x in X] for X in (A_,D_,U_))
|
| 178 |
-
hybrid = Hybrid(config.copy(), D_t, U_t, A_t).to(device)
|
| 179 |
-
hybrid.load_state_dict(torch.load("weights/weights.pt", map_location=device))
|
| 180 |
hybrid.eval()
|
| 181 |
return hybrid
|
| 182 |
|
|
|
|
| 9 |
from .plotting import plot_side_by_side_comparison
|
| 10 |
|
| 11 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
| 12 |
+
from models.HybridGNet2IGSC import HybridGNetHF
|
| 13 |
|
| 14 |
hybrid = None
|
| 15 |
|
|
|
|
| 20 |
if torch.cuda.is_available():
|
| 21 |
torch.cuda.manual_seed_all(seed)
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
def zip_files(files, output_name="complete_results.zip"):
|
| 24 |
with ZipFile(output_name, "w") as zipObj:
|
| 25 |
for file in files:
|
|
|
|
| 67 |
|
| 68 |
def loadModel(device):
|
| 69 |
global hybrid
|
| 70 |
+
hybrid = HybridGNetHF.from_pretrained(
|
| 71 |
+
repo_id="mcosarinsky/CheXmask-U",
|
| 72 |
+
subfolder="v1_skip",
|
| 73 |
+
device=device
|
| 74 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
hybrid.eval()
|
| 76 |
return hybrid
|
| 77 |
|