Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,20 +1,159 @@
|
|
| 1 |
-
|
| 2 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
def dream_generate_response_with_visualization(
|
| 6 |
messages,
|
| 7 |
-
gen_length=
|
| 8 |
-
steps=
|
| 9 |
constraints=None,
|
| 10 |
-
temperature=0.6,
|
| 11 |
-
top_p=0.95,
|
| 12 |
-
alg="entropy",
|
| 13 |
-
alg_temp=0.
|
| 14 |
):
|
| 15 |
"""
|
| 16 |
-
Generate text with DREAM model with visualization using the generation hook
|
| 17 |
-
including special token handling (show once, then hide).
|
| 18 |
|
| 19 |
Args:
|
| 20 |
messages: List of message dictionaries with 'role' and 'content'
|
|
@@ -29,239 +168,606 @@ def dream_generate_response_with_visualization(
|
|
| 29 |
Returns:
|
| 30 |
Tuple: (List of visualization states, final generated text string)
|
| 31 |
"""
|
| 32 |
-
print("--- Starting DREAM Generation ---")
|
| 33 |
-
print(f"
|
| 34 |
print(f"Constraints: {constraints}")
|
| 35 |
|
| 36 |
# --- Input Preparation ---
|
| 37 |
if constraints is None:
|
| 38 |
constraints = {}
|
| 39 |
|
|
|
|
| 40 |
processed_constraints = {}
|
|
|
|
| 41 |
print("Processing constraints:")
|
| 42 |
for pos, word in constraints.items():
|
|
|
|
|
|
|
| 43 |
tokens = tokenizer.encode(" " + word, add_special_tokens=False)
|
| 44 |
if not tokens:
|
| 45 |
print(f" Warning: Could not tokenize constraint word '{word}' at position {pos}. Skipping.")
|
| 46 |
continue
|
| 47 |
-
print(f" Pos {pos}, Word '{word}' -> Tokens {tokens}")
|
|
|
|
| 48 |
for i, token_id in enumerate(tokens):
|
| 49 |
-
|
| 50 |
-
|
|
|
|
| 51 |
else:
|
| 52 |
-
|
| 53 |
|
|
|
|
| 54 |
try:
|
| 55 |
inputs = tokenizer.apply_chat_template(
|
| 56 |
messages,
|
| 57 |
return_tensors="pt",
|
| 58 |
return_dict=True,
|
| 59 |
-
add_generation_prompt=True
|
| 60 |
)
|
| 61 |
input_ids = inputs.input_ids.to(device=device)
|
|
|
|
| 62 |
attention_mask = inputs.attention_mask.to(device=device)
|
| 63 |
prompt_length = input_ids.shape[1]
|
| 64 |
print(f"Input prompt length: {prompt_length}")
|
| 65 |
-
# print(f"Input IDs: {input_ids}")
|
|
|
|
| 66 |
except Exception as e:
|
| 67 |
print(f"Error applying chat template: {e}")
|
| 68 |
return [([("Error applying chat template.", "red")],)], f"Error: {e}"
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
| 73 |
if gen_length <= 0:
|
| 74 |
print("Error: Prompt is already too long.")
|
| 75 |
return [([("Prompt too long.", "red")],)], "Error: Prompt too long."
|
| 76 |
|
| 77 |
# --- State for Visualization Hook ---
|
| 78 |
visualization_states = []
|
| 79 |
-
last_x = None
|
| 80 |
-
|
| 81 |
-
# Define special token IDs to hide after first reveal
|
| 82 |
-
# Using a set for efficient lookup. Add others if needed (e.g., pad_token_id).
|
| 83 |
-
special_token_ids_to_hide = {
|
| 84 |
-
tokenizer.eos_token_id,
|
| 85 |
-
tokenizer.pad_token_id,
|
| 86 |
-
# tokenizer.bos_token_id # Usually not generated mid-sequence
|
| 87 |
-
}
|
| 88 |
-
# Filter out None values if some special tokens aren't defined
|
| 89 |
-
special_token_ids_to_hide = {tid for tid in special_token_ids_to_hide if tid is not None}
|
| 90 |
-
print(f"Special token IDs to hide visually after reveal: {special_token_ids_to_hide}")
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
|
|
|
| 94 |
for pos, token_id in processed_constraints.items():
|
| 95 |
-
absolute_pos = pos
|
| 96 |
if 0 <= absolute_pos < gen_length:
|
| 97 |
-
|
| 98 |
|
|
|
|
| 99 |
initial_state_vis = []
|
| 100 |
for i in range(gen_length):
|
| 101 |
-
token_id =
|
| 102 |
if token_id == MASK_ID:
|
| 103 |
initial_state_vis.append((MASK_TOKEN, "#444444")) # Mask color
|
| 104 |
else:
|
| 105 |
-
|
|
|
|
|
|
|
| 106 |
initial_state_vis.append((token_str if token_str else "?", "#800080")) # Constraint color (purple)
|
| 107 |
visualization_states.append(initial_state_vis)
|
| 108 |
|
| 109 |
# --- Define the Hook Function ---
|
| 110 |
def generation_tokens_hook_func(step, x, logits):
|
| 111 |
nonlocal last_x, visualization_states # Allow modification of outer scope variables
|
| 112 |
-
# print(f"Hook
|
|
|
|
|
|
|
| 113 |
|
| 114 |
-
|
| 115 |
constrained_x = current_x.clone()
|
| 116 |
-
|
| 117 |
-
if
|
| 118 |
-
print("Warning: prompt_len negative in hook, skipping constraints/vis.")
|
| 119 |
-
return current_x
|
| 120 |
|
| 121 |
-
# 1. Apply Constraints
|
| 122 |
for pos, token_id in processed_constraints.items():
|
| 123 |
-
|
| 124 |
-
|
|
|
|
|
|
|
| 125 |
if constrained_x[0, absolute_pos] != token_id:
|
| 126 |
constrained_x[0, absolute_pos] = token_id
|
|
|
|
| 127 |
|
| 128 |
-
|
|
|
|
| 129 |
current_state_vis = []
|
| 130 |
-
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
for i in range(gen_length):
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
continue
|
| 140 |
|
| 141 |
is_constrained = i in processed_constraints
|
| 142 |
-
is_special = current_token_id in
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
raw_token_str = tokenizer.decode([current_token_id], skip_special_tokens=False).strip()
|
| 146 |
-
# Use MASK_TOKEN string for MASK_ID, otherwise use decoded string or '?'
|
| 147 |
-
display_token = MASK_TOKEN if current_token_id == MASK_ID else (raw_token_str if raw_token_str else "?")
|
| 148 |
|
| 149 |
-
|
| 150 |
-
|
| 151 |
|
| 152 |
-
# Determine
|
| 153 |
-
if
|
| 154 |
-
color = "#444444" # Dark Gray
|
| 155 |
display_token = MASK_TOKEN
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
if
|
| 162 |
-
|
| 163 |
-
color = "#FF8C00" # Dark Orange (distinct color for first reveal)
|
| 164 |
-
# display_token is already the raw special token string
|
| 165 |
-
else:
|
| 166 |
-
# Newly revealed regular token
|
| 167 |
-
color = "#66CC66" # Light Green
|
| 168 |
-
# display_token is already the regular token string
|
| 169 |
elif is_special:
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
else:
|
| 177 |
-
#
|
|
|
|
| 178 |
color = "#6699CC" # Light Blue
|
| 179 |
-
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
current_state_vis.append((display_token, color))
|
| 182 |
|
| 183 |
visualization_states.append(current_state_vis)
|
| 184 |
|
| 185 |
# 3. Update last_x for the *next* step's comparison
|
|
|
|
| 186 |
last_x = constrained_x.clone()
|
| 187 |
|
| 188 |
-
# 4. Return the sequence with constraints applied
|
| 189 |
-
return constrained_x
|
| 190 |
|
| 191 |
|
| 192 |
# --- Run DREAM Generation ---
|
| 193 |
try:
|
| 194 |
print("Calling model.diffusion_generate...")
|
| 195 |
-
|
| 196 |
-
|
|
|
|
|
|
|
| 197 |
|
| 198 |
output = model.diffusion_generate(
|
| 199 |
-
input_ids,
|
| 200 |
-
attention_mask=attention_mask,
|
| 201 |
max_new_tokens=gen_length,
|
| 202 |
-
output_history=False,
|
| 203 |
return_dict_in_generate=True,
|
| 204 |
steps=steps,
|
| 205 |
temperature=temperature,
|
| 206 |
top_p=top_p,
|
| 207 |
alg=alg,
|
|
|
|
| 208 |
alg_temp=alg_temp if alg != "origin" else 0.0,
|
| 209 |
generation_tokens_hook_func=generation_tokens_hook_func
|
|
|
|
|
|
|
|
|
|
| 210 |
)
|
| 211 |
print("model.diffusion_generate finished.")
|
| 212 |
|
|
|
|
|
|
|
| 213 |
final_sequence = output.sequences[0]
|
|
|
|
|
|
|
| 214 |
response_token_ids = final_sequence[prompt_length:]
|
| 215 |
|
| 216 |
-
# Decode final
|
| 217 |
final_text = tokenizer.decode(
|
| 218 |
response_token_ids,
|
| 219 |
skip_special_tokens=True,
|
| 220 |
-
clean_up_tokenization_spaces=True
|
| 221 |
).strip()
|
| 222 |
-
print(f"Final generated text
|
| 223 |
|
| 224 |
-
# Add the very final state to visualization if
|
| 225 |
-
#
|
| 226 |
-
if len(visualization_states) <= steps:
|
| 227 |
-
print("Adding final visualization state manually (safeguard).")
|
| 228 |
final_state_vis = []
|
| 229 |
-
final_gen_part =
|
| 230 |
-
# Need the state *before* this final one to know what was 'new'
|
| 231 |
-
gen_part_last_final = last_x[0, prompt_len:] if last_x is not None else None
|
| 232 |
|
| 233 |
-
for i in range(
|
| 234 |
-
|
| 235 |
is_constrained = i in processed_constraints
|
| 236 |
-
is_special =
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
elif
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
final_state_vis.append((display_token, color))
|
| 255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
|
| 257 |
|
| 258 |
except Exception as e:
|
| 259 |
-
print(f"Error during generation
|
| 260 |
import traceback
|
| 261 |
traceback.print_exc()
|
| 262 |
-
|
|
|
|
|
|
|
| 263 |
visualization_states.append([("Error", "red")])
|
| 264 |
final_text = f"Generation failed: {e}"
|
| 265 |
|
| 266 |
-
print("--- DREAM Generation Finished
|
| 267 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
# import numpy as np # Not strictly needed anymore
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import spaces
|
| 5 |
+
from transformers import AutoTokenizer, AutoModel
|
| 6 |
+
import time
|
| 7 |
+
import re # Keep for parsing constraints
|
| 8 |
+
|
| 9 |
+
# Use try-except for space deployment vs local
|
| 10 |
+
try:
|
| 11 |
+
# Used for spaces deployment with GPU
|
| 12 |
+
gpu_check = spaces.GPU
|
| 13 |
+
print("Running in Gradio Spaces with GPU environment.")
|
| 14 |
+
except AttributeError:
|
| 15 |
+
# Fallback for local execution or environments without spaces.GPU
|
| 16 |
+
print("Running in local environment or without spaces.GPU.")
|
| 17 |
+
# Define a dummy decorator if spaces.GPU is not available
|
| 18 |
+
def gpu_check(func):
|
| 19 |
+
return func
|
| 20 |
+
|
| 21 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 22 |
+
print(f"Using device: {device}")
|
| 23 |
+
|
| 24 |
+
# --- Load DREAM Model and Tokenizer ---
|
| 25 |
+
# Ensure sufficient VRAM, Dream 7B needs ~16GB+ VRAM in bfloat16
|
| 26 |
+
model_path = "Dream-org/Dream-v0-Instruct-7B"
|
| 27 |
+
print(f"Loading model: {model_path}...")
|
| 28 |
+
try:
|
| 29 |
+
model = AutoModel.from_pretrained(
|
| 30 |
+
model_path,
|
| 31 |
+
torch_dtype=torch.bfloat16, # Use bfloat16 for efficiency
|
| 32 |
+
trust_remote_code=True,
|
| 33 |
+
# device_map='auto' # Consider if running into OOM errors, might split across GPUs/CPU
|
| 34 |
+
).to(device).eval()
|
| 35 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 36 |
+
model_path,
|
| 37 |
+
trust_remote_code=True
|
| 38 |
+
)
|
| 39 |
+
print("Model and tokenizer loaded successfully.")
|
| 40 |
+
except Exception as e:
|
| 41 |
+
print(f"Error loading model or tokenizer: {e}")
|
| 42 |
+
print("Please ensure you have enough GPU memory and the model files are accessible.")
|
| 43 |
+
# Exit or raise if loading fails
|
| 44 |
+
raise e
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
# --- Constants for DREAM ---
|
| 48 |
+
# Find the mask token and ID from the DREAM tokenizer
|
| 49 |
+
if tokenizer.mask_token is None:
|
| 50 |
+
print("Warning: Mask token not found in tokenizer. Attempting to add '[MASK]'.")
|
| 51 |
+
# This might require retraining or fine-tuning if the model didn't see this token
|
| 52 |
+
num_added = tokenizer.add_special_tokens({'mask_token': '[MASK]'})
|
| 53 |
+
if num_added > 0:
|
| 54 |
+
print(f"Added '{tokenizer.mask_token}' to tokenizer.")
|
| 55 |
+
# Resize model embeddings if vocab changed
|
| 56 |
+
model.resize_token_embeddings(len(tokenizer))
|
| 57 |
+
print("Resized model token embeddings.")
|
| 58 |
+
else:
|
| 59 |
+
# Fallback or error if adding failed or mask token still None
|
| 60 |
+
# It's possible a different token serves this purpose in DREAM's training
|
| 61 |
+
print("Error: Could not set a mask token. Visualization might be inaccurate.")
|
| 62 |
+
# You might need to identify which token ID DREAM uses internally for masking tasks
|
| 63 |
+
# For now, we'll proceed but this is a potential issue.
|
| 64 |
+
MASK_TOKEN = "<?>" # Placeholder symbol
|
| 65 |
+
MASK_ID = -1 # Invalid ID indicates issue
|
| 66 |
+
if tokenizer.mask_token is None:
|
| 67 |
+
raise ValueError("Could not set a mask token for the tokenizer.")
|
| 68 |
+
|
| 69 |
+
MASK_TOKEN = tokenizer.mask_token
|
| 70 |
+
MASK_ID = tokenizer.mask_token_id
|
| 71 |
+
print(f"Using MASK_TOKEN='{MASK_TOKEN}' with ID={MASK_ID}")
|
| 72 |
+
|
| 73 |
+
# Identify other special tokens to potentially hide/show
|
| 74 |
+
eos_token_id = tokenizer.eos_token_id
|
| 75 |
+
pad_token_id = tokenizer.pad_token_id
|
| 76 |
+
special_token_ids_set = {MASK_ID} # Start with Mask ID
|
| 77 |
+
if eos_token_id is not None:
|
| 78 |
+
special_token_ids_set.add(eos_token_id)
|
| 79 |
+
print(f"EOS token ID: {eos_token_id} ({tokenizer.decode([eos_token_id])})")
|
| 80 |
+
if pad_token_id is not None:
|
| 81 |
+
special_token_ids_set.add(pad_token_id)
|
| 82 |
+
print(f"PAD token ID: {pad_token_id} ({tokenizer.decode([pad_token_id])})")
|
| 83 |
+
# Add other common special tokens if needed (e.g., BOS, UNK)
|
| 84 |
+
if tokenizer.bos_token_id is not None:
|
| 85 |
+
special_token_ids_set.add(tokenizer.bos_token_id)
|
| 86 |
+
print(f"BOS token ID: {tokenizer.bos_token_id} ({tokenizer.decode([tokenizer.bos_token_id])})")
|
| 87 |
+
if tokenizer.unk_token_id is not None:
|
| 88 |
+
special_token_ids_set.add(tokenizer.unk_token_id)
|
| 89 |
+
print(f"UNK token ID: {tokenizer.unk_token_id} ({tokenizer.decode([tokenizer.unk_token_id])})")
|
| 90 |
+
|
| 91 |
+
print(f"Identified special token IDs: {special_token_ids_set}")
|
| 92 |
+
|
| 93 |
+
# --- Helper Functions (Constraint Parsing, History Formatting) ---
|
| 94 |
+
|
| 95 |
+
def parse_constraints(constraints_text):
|
| 96 |
+
"""Parse constraints in format: 'position:word, position:word, ...'"""
|
| 97 |
+
constraints = {}
|
| 98 |
+
if not constraints_text:
|
| 99 |
+
return constraints
|
| 100 |
+
|
| 101 |
+
parts = constraints_text.split(',')
|
| 102 |
+
for part in parts:
|
| 103 |
+
part = part.strip() # Trim whitespace
|
| 104 |
+
if ':' not in part:
|
| 105 |
+
continue
|
| 106 |
+
try:
|
| 107 |
+
pos_str, word = part.split(':', 1)
|
| 108 |
+
pos = int(pos_str.strip())
|
| 109 |
+
word = word.strip()
|
| 110 |
+
# Allow empty words if needed? Forcing empty seems odd. Let's require a word.
|
| 111 |
+
if word and pos >= 0:
|
| 112 |
+
constraints[pos] = word
|
| 113 |
+
except ValueError:
|
| 114 |
+
print(f"Warning: Could not parse constraint part: '{part}'")
|
| 115 |
+
continue
|
| 116 |
+
|
| 117 |
+
return constraints
|
| 118 |
+
|
| 119 |
+
def format_chat_history(history):
|
| 120 |
+
"""
|
| 121 |
+
Format chat history for the DREAM model (standard messages format)
|
| 122 |
+
|
| 123 |
+
Args:
|
| 124 |
+
history: List of [user_message, assistant_message] pairs
|
| 125 |
|
| 126 |
+
Returns:
|
| 127 |
+
Formatted conversation for the model (list of dictionaries)
|
| 128 |
+
"""
|
| 129 |
+
messages = []
|
| 130 |
+
# Check if a system prompt is appropriate for Dream-Instruct
|
| 131 |
+
# From demo_completion.py example, it seems it uses system prompt via template
|
| 132 |
+
# messages.append({"role": "system", "content": "You are a helpful assistant."})
|
| 133 |
+
for user_msg, assistant_msg in history:
|
| 134 |
+
if user_msg is not None: # Handle potential None message if clearing failed
|
| 135 |
+
messages.append({"role": "user", "content": user_msg})
|
| 136 |
+
if assistant_msg: # Skip if None (for the latest user message awaiting response)
|
| 137 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
| 138 |
+
|
| 139 |
+
return messages
|
| 140 |
+
|
| 141 |
+
# --- Core Generation Logic for DREAM with Visualization ---
|
| 142 |
+
|
| 143 |
+
@gpu_check # Use the potentially dummy decorator
|
| 144 |
+
@torch.no_grad() # Disable gradient calculations for inference
|
| 145 |
def dream_generate_response_with_visualization(
|
| 146 |
messages,
|
| 147 |
+
gen_length=128,
|
| 148 |
+
steps=128, # Default based on DREAM examples
|
| 149 |
constraints=None,
|
| 150 |
+
temperature=0.6, # Default based on DREAM examples
|
| 151 |
+
top_p=0.95, # Default based on DREAM examples
|
| 152 |
+
alg="entropy", # Default based on DREAM examples
|
| 153 |
+
alg_temp=0.1, # Default based on DREAM examples
|
| 154 |
):
|
| 155 |
"""
|
| 156 |
+
Generate text with DREAM model with visualization using the generation hook.
|
|
|
|
| 157 |
|
| 158 |
Args:
|
| 159 |
messages: List of message dictionaries with 'role' and 'content'
|
|
|
|
| 168 |
Returns:
|
| 169 |
Tuple: (List of visualization states, final generated text string)
|
| 170 |
"""
|
| 171 |
+
print("\n--- Starting DREAM Generation ---")
|
| 172 |
+
print(f"Params: len={gen_length}, steps={steps}, temp={temperature}, top_p={top_p}, alg='{alg}', alg_temp={alg_temp}")
|
| 173 |
print(f"Constraints: {constraints}")
|
| 174 |
|
| 175 |
# --- Input Preparation ---
|
| 176 |
if constraints is None:
|
| 177 |
constraints = {}
|
| 178 |
|
| 179 |
+
# Convert word constraints to token IDs (handle multi-token words)
|
| 180 |
processed_constraints = {}
|
| 181 |
+
constraint_token_lengths = {} # Store length for multi-token constraints
|
| 182 |
print("Processing constraints:")
|
| 183 |
for pos, word in constraints.items():
|
| 184 |
+
# Prepend space for potentially better tokenization consistency
|
| 185 |
+
# (though apply_chat_template should handle spacing)
|
| 186 |
tokens = tokenizer.encode(" " + word, add_special_tokens=False)
|
| 187 |
if not tokens:
|
| 188 |
print(f" Warning: Could not tokenize constraint word '{word}' at position {pos}. Skipping.")
|
| 189 |
continue
|
| 190 |
+
print(f" Pos {pos}, Word '{word}' -> Tokens {tokens} ({tokenizer.convert_ids_to_tokens(tokens)})")
|
| 191 |
+
constraint_token_lengths[pos] = len(tokens)
|
| 192 |
for i, token_id in enumerate(tokens):
|
| 193 |
+
target_pos = pos + i
|
| 194 |
+
if target_pos in processed_constraints:
|
| 195 |
+
print(f" Warning: Overlapping constraint token at position {target_pos}. Keeping first constraint's token ({processed_constraints[target_pos]}).")
|
| 196 |
else:
|
| 197 |
+
processed_constraints[target_pos] = token_id
|
| 198 |
|
| 199 |
+
# Prepare the prompt using chat template
|
| 200 |
try:
|
| 201 |
inputs = tokenizer.apply_chat_template(
|
| 202 |
messages,
|
| 203 |
return_tensors="pt",
|
| 204 |
return_dict=True,
|
| 205 |
+
add_generation_prompt=True # Crucial for Dream-Instruct
|
| 206 |
)
|
| 207 |
input_ids = inputs.input_ids.to(device=device)
|
| 208 |
+
# Use the attention mask generated by the template
|
| 209 |
attention_mask = inputs.attention_mask.to(device=device)
|
| 210 |
prompt_length = input_ids.shape[1]
|
| 211 |
print(f"Input prompt length: {prompt_length}")
|
| 212 |
+
# print(f"Input IDs: {input_ids}")
|
| 213 |
+
# print(f"Attention Mask: {attention_mask}") # Verify mask covers prompt
|
| 214 |
except Exception as e:
|
| 215 |
print(f"Error applying chat template: {e}")
|
| 216 |
return [([("Error applying chat template.", "red")],)], f"Error: {e}"
|
| 217 |
|
| 218 |
+
# Check context length (DREAM uses 2048 default)
|
| 219 |
+
model_max_length = getattr(model.config, 'max_position_embeddings', 2048)
|
| 220 |
+
if prompt_length + gen_length > model_max_length:
|
| 221 |
+
print(f"Warning: Requested length ({prompt_length + gen_length}) exceeds model max length ({model_max_length}). Truncating gen_length.")
|
| 222 |
+
gen_length = model_max_length - prompt_length
|
| 223 |
if gen_length <= 0:
|
| 224 |
print("Error: Prompt is already too long.")
|
| 225 |
return [([("Prompt too long.", "red")],)], "Error: Prompt too long."
|
| 226 |
|
| 227 |
# --- State for Visualization Hook ---
|
| 228 |
visualization_states = []
|
| 229 |
+
last_x = None # Store the full sequence (prompt + generation) from the previous step
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
|
| 231 |
+
# Initial state: Prompt + all masks for generation part
|
| 232 |
+
initial_gen_part = torch.full((1, gen_length), MASK_ID, dtype=torch.long, device=device)
|
| 233 |
+
# Apply initial constraints to the masked part *before* the first visualization state
|
| 234 |
for pos, token_id in processed_constraints.items():
|
| 235 |
+
absolute_pos = pos # Position relative to start of generation
|
| 236 |
if 0 <= absolute_pos < gen_length:
|
| 237 |
+
initial_gen_part[0, absolute_pos] = token_id
|
| 238 |
|
| 239 |
+
# Create the first visualization state (only the generation part)
|
| 240 |
initial_state_vis = []
|
| 241 |
for i in range(gen_length):
|
| 242 |
+
token_id = initial_gen_part[0, i].item()
|
| 243 |
if token_id == MASK_ID:
|
| 244 |
initial_state_vis.append((MASK_TOKEN, "#444444")) # Mask color
|
| 245 |
else:
|
| 246 |
+
# This must be a constraint applied initially
|
| 247 |
+
# Decode without skipping special to see raw constraint if needed
|
| 248 |
+
token_str = tokenizer.decode([token_id], skip_special_tokens=False).strip()
|
| 249 |
initial_state_vis.append((token_str if token_str else "?", "#800080")) # Constraint color (purple)
|
| 250 |
visualization_states.append(initial_state_vis)
|
| 251 |
|
| 252 |
# --- Define the Hook Function ---
|
| 253 |
def generation_tokens_hook_func(step, x, logits):
|
| 254 |
nonlocal last_x, visualization_states # Allow modification of outer scope variables
|
| 255 |
+
# print(f"Hook step {step}") # Keep console less noisy
|
| 256 |
+
|
| 257 |
+
current_x = x.clone() # Full sequence (prompt + generation) at this step
|
| 258 |
|
| 259 |
+
# 1. Apply Constraints to the current sequence
|
| 260 |
constrained_x = current_x.clone()
|
| 261 |
+
current_prompt_len = current_x.shape[1] - gen_length # Recalculate prompt length based on current x
|
| 262 |
+
if current_prompt_len < 0:
|
| 263 |
+
print(f"Warning: prompt_len {current_prompt_len} negative in hook step {step}, skipping constraints/vis.")
|
| 264 |
+
return current_x # Return unmodified if something is wrong
|
| 265 |
|
|
|
|
| 266 |
for pos, token_id in processed_constraints.items():
|
| 267 |
+
# pos is relative to the start of the *generation* part
|
| 268 |
+
absolute_pos = current_prompt_len + pos
|
| 269 |
+
# Ensure position is within the bounds of the *current* sequence 'x'
|
| 270 |
+
if current_prompt_len <= absolute_pos < current_x.shape[1]:
|
| 271 |
if constrained_x[0, absolute_pos] != token_id:
|
| 272 |
constrained_x[0, absolute_pos] = token_id
|
| 273 |
+
# print(f" Constraint enforced at pos {pos} ({absolute_pos}) -> {token_id}")
|
| 274 |
|
| 275 |
+
|
| 276 |
+
# 2. Generate Visualization State for *this* step (generation part only)
|
| 277 |
current_state_vis = []
|
| 278 |
+
# Compare current_x (before explicit constraint application in *this* hook call)
|
| 279 |
+
# with last_x (state from *previous* hook call / initial state)
|
| 280 |
+
gen_part_current = current_x[0, current_prompt_len:]
|
| 281 |
+
# Ensure last_x exists and has the same shape for comparison
|
| 282 |
+
gen_part_last = last_x[0, current_prompt_len:] if (last_x is not None and last_x.shape == current_x.shape) else None
|
| 283 |
|
| 284 |
for i in range(gen_length):
|
| 285 |
+
# Ensure index i is valid for the current generation part
|
| 286 |
+
if i >= gen_part_current.shape[0]:
|
| 287 |
+
print(f"Warning: Index {i} out of bounds for gen_part_current (shape {gen_part_current.shape}) in step {step}.")
|
| 288 |
+
continue # Skip if index is invalid
|
| 289 |
|
| 290 |
+
current_token_id = gen_part_current[i].item()
|
| 291 |
+
# Handle case where last_x was None or had different shape
|
| 292 |
+
last_token_id = gen_part_last[i].item() if gen_part_last is not None and i < gen_part_last.shape[0] else MASK_ID # Assume mask initially
|
|
|
|
| 293 |
|
| 294 |
is_constrained = i in processed_constraints
|
| 295 |
+
is_special = current_token_id in special_token_ids_set
|
| 296 |
+
is_mask = current_token_id == MASK_ID
|
| 297 |
+
was_mask = last_token_id == MASK_ID or last_x is None # Treat first step as coming from mask
|
|
|
|
|
|
|
|
|
|
| 298 |
|
| 299 |
+
display_token = ""
|
| 300 |
+
color = ""
|
| 301 |
|
| 302 |
+
# Determine display token and color based on state transitions
|
| 303 |
+
if is_mask:
|
|
|
|
| 304 |
display_token = MASK_TOKEN
|
| 305 |
+
color = "#444444" # Dark Gray
|
| 306 |
+
elif is_constrained and processed_constraints[i] == current_token_id:
|
| 307 |
+
# Always show the constrained token, color purple
|
| 308 |
+
# Decide whether to show raw special tokens when constrained
|
| 309 |
+
raw_decode = tokenizer.decode([current_token_id], skip_special_tokens=False).strip()
|
| 310 |
+
display_token = raw_decode if raw_decode else "?"
|
| 311 |
+
color = "#800080" # Purple
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 312 |
elif is_special:
|
| 313 |
+
if was_mask:
|
| 314 |
+
# Newly revealed special token: Show its representation once
|
| 315 |
+
display_token = tokenizer.decode([current_token_id], skip_special_tokens=False).strip() # Show raw special
|
| 316 |
+
color = "#FF8C00" # DarkOrange
|
| 317 |
+
else:
|
| 318 |
+
# Already revealed special token: Hide it by showing a space
|
| 319 |
+
display_token = " " # Effectively hides it
|
| 320 |
+
color = "#6699CC" # Use 'Old' color (Light Blue) but content is hidden space
|
| 321 |
+
elif was_mask:
|
| 322 |
+
# Newly revealed normal token
|
| 323 |
+
display_token = tokenizer.decode([current_token_id], skip_special_tokens=True).strip()
|
| 324 |
+
color = "#66CC66" # Light Green
|
| 325 |
else:
|
| 326 |
+
# Previously revealed normal token
|
| 327 |
+
display_token = tokenizer.decode([current_token_id], skip_special_tokens=True).strip()
|
| 328 |
color = "#6699CC" # Light Blue
|
| 329 |
+
|
| 330 |
+
# Fallback for empty decodes of non-special, non-mask tokens
|
| 331 |
+
if not display_token and not is_mask and not (is_special and not was_mask):
|
| 332 |
+
display_token = "?" # Use question mark for unexpected empty decodes
|
| 333 |
|
| 334 |
current_state_vis.append((display_token, color))
|
| 335 |
|
| 336 |
visualization_states.append(current_state_vis)
|
| 337 |
|
| 338 |
# 3. Update last_x for the *next* step's comparison
|
| 339 |
+
# Store the state *after* applying constraints for accurate comparison next time
|
| 340 |
last_x = constrained_x.clone()
|
| 341 |
|
| 342 |
+
# 4. Return the sequence with constraints applied for the model's next step
|
| 343 |
+
return constrained_x # Return the sequence with constraints enforced
|
| 344 |
|
| 345 |
|
| 346 |
# --- Run DREAM Generation ---
|
| 347 |
try:
|
| 348 |
print("Calling model.diffusion_generate...")
|
| 349 |
+
# Make sure last_x is initialized correctly before the first hook call
|
| 350 |
+
# It should represent the state *before* the first diffusion step.
|
| 351 |
+
initial_full_x = torch.cat([input_ids, initial_gen_part], dim=1)
|
| 352 |
+
last_x = initial_full_x.clone() # Initialize last_x with prompt + initial masked/constrained gen part
|
| 353 |
|
| 354 |
output = model.diffusion_generate(
|
| 355 |
+
input_ids=input_ids,
|
| 356 |
+
attention_mask=attention_mask, # Pass the correct attention mask
|
| 357 |
max_new_tokens=gen_length,
|
| 358 |
+
output_history=False, # We build history in the hook
|
| 359 |
return_dict_in_generate=True,
|
| 360 |
steps=steps,
|
| 361 |
temperature=temperature,
|
| 362 |
top_p=top_p,
|
| 363 |
alg=alg,
|
| 364 |
+
# alg_temp is only relevant for confidence-based algs (not 'origin')
|
| 365 |
alg_temp=alg_temp if alg != "origin" else 0.0,
|
| 366 |
generation_tokens_hook_func=generation_tokens_hook_func
|
| 367 |
+
# Ensure generation doesn't run past eos_token if not desired
|
| 368 |
+
# eos_token_id=eos_token_id, # This might stop generation early
|
| 369 |
+
# pad_token_id=tokenizer.eos_token_id # Often pad is same as eos for LLMs
|
| 370 |
)
|
| 371 |
print("model.diffusion_generate finished.")
|
| 372 |
|
| 373 |
+
# Extract final generated sequence (response part only)
|
| 374 |
+
# The hook ensures the returned sequence has constraints applied
|
| 375 |
final_sequence = output.sequences[0]
|
| 376 |
+
# Handle potential length mismatch if generation stopped early
|
| 377 |
+
actual_gen_len = final_sequence.shape[0] - prompt_length
|
| 378 |
response_token_ids = final_sequence[prompt_length:]
|
| 379 |
|
| 380 |
+
# Decode the final response, skipping special tokens like EOS/PAD
|
| 381 |
final_text = tokenizer.decode(
|
| 382 |
response_token_ids,
|
| 383 |
skip_special_tokens=True,
|
| 384 |
+
clean_up_tokenization_spaces=True # Recommended for cleaner output
|
| 385 |
).strip()
|
| 386 |
+
print(f"Final generated text: '{final_text}'")
|
| 387 |
|
| 388 |
+
# Add the very final state to visualization if the hook didn't capture it
|
| 389 |
+
# (Mainly a safeguard, hook should run 'steps' times or until completion)
|
| 390 |
+
if len(visualization_states) <= steps: # Hook might run 'steps' times
|
|
|
|
| 391 |
final_state_vis = []
|
| 392 |
+
final_gen_part = response_token_ids # Use the extracted response tokens
|
|
|
|
|
|
|
| 393 |
|
| 394 |
+
for i in range(len(final_gen_part)): # Iterate over actual generated tokens
|
| 395 |
+
token_id = final_gen_part[i].item()
|
| 396 |
is_constrained = i in processed_constraints
|
| 397 |
+
is_special = token_id in special_token_ids_set
|
| 398 |
+
is_mask = token_id == MASK_ID # Should not happen in final output
|
| 399 |
+
|
| 400 |
+
display_token = ""
|
| 401 |
+
color = ""
|
| 402 |
+
|
| 403 |
+
if is_mask: color = "#444444"; display_token = MASK_TOKEN
|
| 404 |
+
elif is_constrained and processed_constraints.get(i) == token_id:
|
| 405 |
+
raw_decode = tokenizer.decode([token_id], skip_special_tokens=False).strip()
|
| 406 |
+
display_token = raw_decode if raw_decode else "?"; color = "#800080" # Purple
|
| 407 |
+
elif is_special:
|
| 408 |
+
# Hide special tokens in the *final* display state for cleaner look
|
| 409 |
+
display_token = " "; color = "#6699CC" # Hide as 'Old' blue
|
| 410 |
+
else:
|
| 411 |
+
display_token = tokenizer.decode([token_id], skip_special_tokens=True).strip()
|
| 412 |
+
color = "#6699CC" # Final state uses 'Old' blue
|
| 413 |
+
|
| 414 |
+
if not display_token: display_token = "?" # Fallback
|
| 415 |
final_state_vis.append((display_token, color))
|
| 416 |
+
|
| 417 |
+
# Pad the final state visualization if actual gen len < requested gen_length
|
| 418 |
+
# This shouldn't be necessary if HighlightedText handles shorter lists
|
| 419 |
+
# while len(final_state_vis) < gen_length:
|
| 420 |
+
# final_state_vis.append((" ", "#FFFFFF")) # Add empty space
|
| 421 |
+
|
| 422 |
+
if final_state_vis: # Only append if we generated something
|
| 423 |
+
visualization_states.append(final_state_vis)
|
| 424 |
|
| 425 |
|
| 426 |
except Exception as e:
|
| 427 |
+
print(f"\n--- Error during generation ---")
|
| 428 |
import traceback
|
| 429 |
traceback.print_exc()
|
| 430 |
+
# Add error message to visualization
|
| 431 |
+
error_msg = f"Generation Error: Check Logs"
|
| 432 |
+
# Append error to visualization states if possible
|
| 433 |
visualization_states.append([("Error", "red")])
|
| 434 |
final_text = f"Generation failed: {e}"
|
| 435 |
|
| 436 |
+
print("--- DREAM Generation Finished ---\n")
|
| 437 |
+
# Ensure we always return a list (even if empty) and a string
|
| 438 |
+
if not isinstance(visualization_states, list): visualization_states = []
|
| 439 |
+
if not isinstance(final_text, str): final_text = str(final_text)
|
| 440 |
+
|
| 441 |
+
return visualization_states, final_text
|
| 442 |
+
|
| 443 |
+
|
| 444 |
+
# --- Gradio UI Setup ---
|
| 445 |
+
|
| 446 |
+
css = '''
|
| 447 |
+
.category-legend{display:none}
|
| 448 |
+
/* Increase overall base font size */
|
| 449 |
+
body, .gradio-container { font-size: 105%; }
|
| 450 |
+
/* Make buttons slightly larger */
|
| 451 |
+
/* button { min-height: 40px; } */
|
| 452 |
+
.small_btn {
|
| 453 |
+
min-width: 60px; /* Adjust as needed */
|
| 454 |
+
max-width: 100px;
|
| 455 |
+
height: 42px; /* Adjust height */
|
| 456 |
+
flex-grow: 0 !important; /* Prevent button from growing */
|
| 457 |
+
margin-left: 5px !important; /* Add some space */
|
| 458 |
+
font-size: 100%; /* Match button font size */
|
| 459 |
+
padding: 0 10px !important; /* Adjust padding */
|
| 460 |
+
}
|
| 461 |
+
.chat-input-row {
|
| 462 |
+
display: flex;
|
| 463 |
+
align-items: center; /* Vertically align items */
|
| 464 |
+
margin-top: 10px; /* Add space above input row */
|
| 465 |
+
}
|
| 466 |
+
/* Ensure Textbox takes up space */
|
| 467 |
+
.chat-input-row .gr-textbox {
|
| 468 |
+
flex-grow: 1;
|
| 469 |
+
margin-right: 5px;
|
| 470 |
+
}
|
| 471 |
+
/* Chatbot styling */
|
| 472 |
+
.gr-chatbot .message {
|
| 473 |
+
font-size: 100%; /* Ensure chat message font size is reasonable */
|
| 474 |
+
padding: 10px !important;
|
| 475 |
+
border-radius: 8px !important;
|
| 476 |
+
}
|
| 477 |
+
.gr-chatbot .message.user { background-color: #E0F7FA !important; align-self: flex-end; } /* Light cyan for user */
|
| 478 |
+
.gr-chatbot .message.bot { background-color: #F1F8E9 !important; align-self: flex-start; } /* Light green for bot */
|
| 479 |
+
/* HighlightedText styling */
|
| 480 |
+
.gr-highlightedtext span {
|
| 481 |
+
padding: 1px 2px; /* Minimal padding */
|
| 482 |
+
margin: 0 1px; /* Minimal margin */
|
| 483 |
+
border-radius: 3px;
|
| 484 |
+
font-family: monospace; /* Use monospace font for better alignment */
|
| 485 |
+
font-size: 95%; /* Slightly smaller font for dense vis */
|
| 486 |
+
line-height: 1.4; /* Adjust line spacing */
|
| 487 |
+
}
|
| 488 |
+
.gr-highlightedtext {
|
| 489 |
+
padding: 10px;
|
| 490 |
+
border: 1px solid #E0E0E0;
|
| 491 |
+
border-radius: 5px;
|
| 492 |
+
background-color: #FAFAFA; /* Light background for the container */
|
| 493 |
+
}
|
| 494 |
+
/* Legend Styling */
|
| 495 |
+
.legend {
|
| 496 |
+
font-size: 90%;
|
| 497 |
+
margin-top: 5px;
|
| 498 |
+
color: #555;
|
| 499 |
+
}
|
| 500 |
+
.legend span {
|
| 501 |
+
display: inline-block; /* Keep legend items inline */
|
| 502 |
+
margin-right: 10px;
|
| 503 |
+
white-space: nowrap; /* Prevent wrapping */
|
| 504 |
+
}
|
| 505 |
+
.legend span::before { /* Style the color square */
|
| 506 |
+
content: '■';
|
| 507 |
+
display: inline-block;
|
| 508 |
+
margin-right: 4px;
|
| 509 |
+
font-size: 120%; /* Make square slightly larger */
|
| 510 |
+
vertical-align: middle; /* Align square with text */
|
| 511 |
+
}
|
| 512 |
+
'''
|
| 513 |
+
def create_chatbot_demo():
|
| 514 |
+
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
| 515 |
+
gr.Markdown("## Dream 7B - Diffusion Language Model Demo")
|
| 516 |
+
gr.Markdown("Interact with the Dream 7B instruction-tuned model and watch the diffusion process unfold step-by-step. "
|
| 517 |
+
"You can optionally constrain specific words at certain positions.")
|
| 518 |
+
with gr.Row():
|
| 519 |
+
gr.Markdown("[Model Card](https://huggingface.co/Dream-org/Dream-v0-Instruct-7B)", scale=1)
|
| 520 |
+
gr.Markdown("[Blog Post](https://hkunlp.github.io/blog/2025/dream/)", scale=1)
|
| 521 |
+
|
| 522 |
+
# STATE MANAGEMENT
|
| 523 |
+
chat_history = gr.State([]) # Stores conversation [[user, bot], ...]
|
| 524 |
+
|
| 525 |
+
# UI LAYOUT
|
| 526 |
+
with gr.Row():
|
| 527 |
+
# Left Column: Chat Interface
|
| 528 |
+
with gr.Column(scale=3):
|
| 529 |
+
chatbot_ui = gr.Chatbot(
|
| 530 |
+
label="Conversation",
|
| 531 |
+
height=550,
|
| 532 |
+
bubble_full_width=False,
|
| 533 |
+
show_copy_button=True,
|
| 534 |
+
render=False # Rendered explicitly later for streaming
|
| 535 |
+
)
|
| 536 |
+
chatbot_ui.render() # Manually render after setting parameters
|
| 537 |
+
|
| 538 |
+
# Message input Row
|
| 539 |
+
with gr.Row(elem_classes="chat-input-row"):
|
| 540 |
+
user_input = gr.Textbox(
|
| 541 |
+
label="Your Message",
|
| 542 |
+
placeholder="Type your message and press Enter, or click Send...",
|
| 543 |
+
scale=4, # Give textbox more space relative to button
|
| 544 |
+
container=False,
|
| 545 |
+
show_label=False
|
| 546 |
+
)
|
| 547 |
+
send_btn = gr.Button("Send", scale=1, elem_classes="small_btn", variant="primary")
|
| 548 |
+
|
| 549 |
+
constraints_input = gr.Textbox(
|
| 550 |
+
label="Word Constraints (Optional)",
|
| 551 |
+
info="Force words at positions (0-indexed from response start). Format: 'pos:word, pos:word'. Example: '0:Once, 5:upon, 10:time'",
|
| 552 |
+
placeholder="e.g., 0:Hello, 6:world",
|
| 553 |
+
lines=1
|
| 554 |
+
)
|
| 555 |
+
|
| 556 |
+
# Right Column: Visualization and Settings
|
| 557 |
+
with gr.Column(scale=2):
|
| 558 |
+
gr.Markdown("### Denoising Process Visualization")
|
| 559 |
+
output_vis = gr.HighlightedText(
|
| 560 |
+
label="Generation Steps",
|
| 561 |
+
show_label=False, # Label provided by Markdown above
|
| 562 |
+
combine_adjacent=False,
|
| 563 |
+
show_legend=False, # Using custom HTML legend below
|
| 564 |
+
# color_map is not directly used due to show_legend=False, but useful for reference
|
| 565 |
+
color_map={
|
| 566 |
+
"Mask": "#444444",
|
| 567 |
+
"New": "#66CC66",
|
| 568 |
+
"Old": "#6699CC",
|
| 569 |
+
"Constraint": "#800080",
|
| 570 |
+
"Special (New)": "#FF8C00",
|
| 571 |
+
"Error": "red"
|
| 572 |
+
}
|
| 573 |
+
)
|
| 574 |
+
# Custom HTML Legend
|
| 575 |
+
gr.HTML(
|
| 576 |
+
"""
|
| 577 |
+
<div class='legend'>
|
| 578 |
+
<span style="color:#444444;">■ Mask</span> |
|
| 579 |
+
<span style='color:#66CC66;'>■ New</span> |
|
| 580 |
+
<span style='color:#FF8C00;'>■ Special (New)</span> |
|
| 581 |
+
<span style='color:#6699CC;'>■ Old</span> |
|
| 582 |
+
<span style='color:#800080;'>■ Constraint</span>
|
| 583 |
+
</div>
|
| 584 |
+
""",
|
| 585 |
+
elem_id="legend-html"
|
| 586 |
+
)
|
| 587 |
+
|
| 588 |
+
# Generation Settings Accordion
|
| 589 |
+
with gr.Accordion("Generation Settings", open=False):
|
| 590 |
+
gen_length = gr.Slider(
|
| 591 |
+
minimum=16, maximum=512, value=128, step=16,
|
| 592 |
+
label="Max New Tokens", info="Max response length."
|
| 593 |
+
)
|
| 594 |
+
steps = gr.Slider(
|
| 595 |
+
minimum=8, maximum=512, value=128, step=8,
|
| 596 |
+
label="Diffusion Steps", info="More steps = finer generation (potentially slower)."
|
| 597 |
+
)
|
| 598 |
+
temperature = gr.Slider(
|
| 599 |
+
minimum=0.0, maximum=1.5, value=0.6, step=0.05,
|
| 600 |
+
label="Temperature", info="Controls randomness. Lower=more deterministic."
|
| 601 |
+
)
|
| 602 |
+
top_p = gr.Slider(
|
| 603 |
+
minimum=0.0, maximum=1.0, value=0.95, step=0.05,
|
| 604 |
+
label="Top-P (Nucleus)", info="Filters vocabulary probabilistically. Lower=less diverse."
|
| 605 |
+
)
|
| 606 |
+
# Map UI choices to DREAM's alg parameters
|
| 607 |
+
remasking_strategy = gr.Radio(
|
| 608 |
+
choices=[
|
| 609 |
+
("Random", "origin"), # User friendly name -> actual param
|
| 610 |
+
("Entropy", "entropy"),
|
| 611 |
+
("MaskGit+", "maskgit_plus"),
|
| 612 |
+
("TopK Margin", "topk_margin"),
|
| 613 |
+
],
|
| 614 |
+
value="entropy", # Default
|
| 615 |
+
label="Generation Order Strategy (alg)",
|
| 616 |
+
info="How the model decides which tokens to generate first."
|
| 617 |
+
)
|
| 618 |
+
alg_temp = gr.Slider(
|
| 619 |
+
minimum=0.0, maximum=1.0, value=0.1, step=0.05,
|
| 620 |
+
label="Order Randomness (alg_temp)" ,
|
| 621 |
+
info="Adds randomness to confidence-based strategies (Entropy, MaskGit+, TopK). Ignored for Random."
|
| 622 |
+
)
|
| 623 |
+
visualization_delay = gr.Slider(
|
| 624 |
+
minimum=0.0, maximum=0.5, value=0.05, step=0.01,
|
| 625 |
+
label="Visualization Delay (sec)", info="Pause between steps in visualization."
|
| 626 |
+
)
|
| 627 |
+
|
| 628 |
+
# Clear button Row
|
| 629 |
+
with gr.Row():
|
| 630 |
+
clear_btn = gr.Button("Clear Conversation", variant="stop", icon="🗑️")
|
| 631 |
+
|
| 632 |
+
|
| 633 |
+
# --- Event Handlers ---
|
| 634 |
+
|
| 635 |
+
# Helper to add message to history state
|
| 636 |
+
def add_message_to_history(history_state, user_message, bot_message):
|
| 637 |
+
# history_state is the raw list from gr.State
|
| 638 |
+
history_state.append([user_message, bot_message])
|
| 639 |
+
return history_state
|
| 640 |
+
|
| 641 |
+
# Function when user submits message (Enter or Send button)
|
| 642 |
+
def handle_user_message(message, history_state):
|
| 643 |
+
print(f"User submitted: '{message}'")
|
| 644 |
+
if not message or not message.strip():
|
| 645 |
+
print("Empty message submitted, doing nothing.")
|
| 646 |
+
# Return unchanged state if message is empty
|
| 647 |
+
# Need to return values for all outputs of the .submit/.click
|
| 648 |
+
# history_state, chatbot_ui, user_input, output_vis
|
| 649 |
+
return history_state, history_state, "", [] # No change to chatbot UI yet
|
| 650 |
+
|
| 651 |
+
# Add user message to history state (with None for bot response initially)
|
| 652 |
+
updated_history_state = add_message_to_history(history_state, message, None)
|
| 653 |
+
|
| 654 |
+
# Prepare updated history for display in Chatbot UI
|
| 655 |
+
# We only display the user message now, bot response comes later
|
| 656 |
+
chatbot_display = updated_history_state.copy()
|
| 657 |
+
|
| 658 |
+
# Clear the input textbox and visualization
|
| 659 |
+
return updated_history_state, chatbot_display, "", []
|
| 660 |
+
|
| 661 |
+
# Function to generate bot response (triggered after user message is handled)
|
| 662 |
+
# Uses yield for streaming visualization updates
|
| 663 |
+
def generate_bot_response(
|
| 664 |
+
history_state, # The current state [[user, None], ...]
|
| 665 |
+
gen_length_val, steps_val, constraints_text, delay_val,
|
| 666 |
+
temperature_val, top_p_val, alg_val, alg_temp_val
|
| 667 |
+
):
|
| 668 |
+
print("\n--- Streaming Bot Response ---")
|
| 669 |
+
if not history_state or history_state[-1][1] is not None:
|
| 670 |
+
print("History empty or last message already has response. Skipping generation.")
|
| 671 |
+
# Yield current state if called unnecessarily
|
| 672 |
+
yield history_state, [] # Chatbot UI, Visualization
|
| 673 |
+
return
|
| 674 |
+
|
| 675 |
+
# Get the conversation history in the format the model expects
|
| 676 |
+
messages_for_model = format_chat_history(history_state) # Includes the latest user query
|
| 677 |
+
|
| 678 |
+
# Parse constraints from the textbox
|
| 679 |
+
parsed_constraints = parse_constraints(constraints_text)
|
| 680 |
+
|
| 681 |
+
# Generate response with visualization (this function handles the core logic)
|
| 682 |
+
vis_states, response_text = dream_generate_response_with_visualization(
|
| 683 |
+
messages_for_model,
|
| 684 |
+
gen_length=gen_length_val,
|
| 685 |
+
steps=steps_val,
|
| 686 |
+
constraints=parsed_constraints,
|
| 687 |
+
temperature=temperature_val,
|
| 688 |
+
top_p=top_p_val,
|
| 689 |
+
alg=alg_val,
|
| 690 |
+
alg_temp=alg_temp_val
|
| 691 |
+
)
|
| 692 |
+
|
| 693 |
+
# Update the history state with the final bot response (critical!)
|
| 694 |
+
history_state[-1][1] = response_text.strip()
|
| 695 |
+
|
| 696 |
+
# Stream the updates
|
| 697 |
+
if vis_states:
|
| 698 |
+
# Yield the initial visualization state first
|
| 699 |
+
yield history_state, vis_states[0] # Update chatbot UI (implicitly via history), update visualization
|
| 700 |
+
|
| 701 |
+
# Then animate through the rest of the visualization states
|
| 702 |
+
for state in vis_states[1:]:
|
| 703 |
+
time.sleep(delay_val)
|
| 704 |
+
yield history_state, state # Update chatbot UI, update visualization
|
| 705 |
+
else:
|
| 706 |
+
# Handle case where generation failed or produced no visualization
|
| 707 |
+
print("Warning: No visualization states generated.")
|
| 708 |
+
yield history_state, [("No visualization generated.", "orange")] # Update chatbot UI, show warning in vis
|
| 709 |
+
|
| 710 |
+
print("--- Streaming Complete ---")
|
| 711 |
+
|
| 712 |
+
|
| 713 |
+
# Function to clear everything
|
| 714 |
+
def clear_conversation_state():
|
| 715 |
+
print("Clearing conversation.")
|
| 716 |
+
# Reset state and UI components
|
| 717 |
+
return [], [], "", [] # chat_history (State), chatbot_ui, user_input, output_vis
|
| 718 |
+
|
| 719 |
+
# --- Wire UI elements to functions ---
|
| 720 |
+
|
| 721 |
+
# Define shared inputs for generation to avoid repetition
|
| 722 |
+
generation_inputs = [
|
| 723 |
+
chat_history, gen_length, steps, constraints_input, visualization_delay,
|
| 724 |
+
temperature, top_p, remasking_strategy, alg_temp
|
| 725 |
+
]
|
| 726 |
+
# Define shared outputs for streaming
|
| 727 |
+
streaming_outputs = [chatbot_ui, output_vis]
|
| 728 |
+
|
| 729 |
+
# Typing in Textbox and pressing Enter
|
| 730 |
+
user_input.submit(
|
| 731 |
+
fn=handle_user_message,
|
| 732 |
+
inputs=[user_input, chat_history],
|
| 733 |
+
outputs=[chat_history, chatbot_ui, user_input, output_vis], # Update history state, chatbot display, clear input, clear vis
|
| 734 |
+
queue=False # Process user input immediately
|
| 735 |
+
).then(
|
| 736 |
+
fn=generate_bot_response,
|
| 737 |
+
inputs=generation_inputs,
|
| 738 |
+
outputs=streaming_outputs, # Stream updates to chatbot and visualization
|
| 739 |
+
#api_name="generate_stream" # Optional: Name for API endpoint
|
| 740 |
+
)
|
| 741 |
+
|
| 742 |
+
# Clicking the Send button
|
| 743 |
+
send_btn.click(
|
| 744 |
+
fn=handle_user_message,
|
| 745 |
+
inputs=[user_input, chat_history],
|
| 746 |
+
outputs=[chat_history, chatbot_ui, user_input, output_vis],
|
| 747 |
+
queue=False
|
| 748 |
+
).then(
|
| 749 |
+
fn=generate_bot_response,
|
| 750 |
+
inputs=generation_inputs,
|
| 751 |
+
outputs=streaming_outputs,
|
| 752 |
+
# api_name="generate_stream_click" # Optional
|
| 753 |
+
)
|
| 754 |
+
|
| 755 |
+
# Clicking the Clear button
|
| 756 |
+
clear_btn.click(
|
| 757 |
+
fn=clear_conversation_state,
|
| 758 |
+
inputs=[],
|
| 759 |
+
outputs=[chat_history, chatbot_ui, user_input, output_vis],
|
| 760 |
+
queue=False # Clearing should be instant
|
| 761 |
+
)
|
| 762 |
+
|
| 763 |
+
return demo
|
| 764 |
+
|
| 765 |
+
# --- Launch the Gradio App ---
|
| 766 |
+
if __name__ == "__main__":
|
| 767 |
+
print("Creating Gradio demo...")
|
| 768 |
+
gradio_demo = create_chatbot_demo()
|
| 769 |
+
print("Launching Gradio demo...")
|
| 770 |
+
# Use queue() for handling concurrent users and potentially long generation times
|
| 771 |
+
# share=True generates a public link (useful for Colab/Spaces)
|
| 772 |
+
# debug=True provides helpful Gradio logs in the console
|
| 773 |
+
gradio_demo.queue().launch(share=True, debug=False) # Set debug=True for more verbose logs if needed
|