Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,20 +11,6 @@ from PIL import Image
|
|
| 11 |
edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors")
|
| 12 |
normal_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl.safetensors")
|
| 13 |
|
| 14 |
-
def set_timesteps_patched(self, num_inference_steps: int, device = None):
|
| 15 |
-
self.num_inference_steps = num_inference_steps
|
| 16 |
-
|
| 17 |
-
ramp = np.linspace(0, 1, self.num_inference_steps)
|
| 18 |
-
sigmas = torch.linspace(math.log(self.config.sigma_min), math.log(self.config.sigma_max), len(ramp)).exp().flip(0)
|
| 19 |
-
|
| 20 |
-
sigmas = (sigmas).to(dtype=torch.float32, device=device)
|
| 21 |
-
self.timesteps = self.precondition_noise(sigmas)
|
| 22 |
-
|
| 23 |
-
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
| 24 |
-
self._step_index = None
|
| 25 |
-
self._begin_index = None
|
| 26 |
-
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
| 27 |
-
|
| 28 |
def resize_image(image, resolution):
|
| 29 |
original_width, original_height = image.size
|
| 30 |
|
|
@@ -38,18 +24,17 @@ def resize_image(image, resolution):
|
|
| 38 |
resized_img = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
| 39 |
return resized_img
|
| 40 |
|
| 41 |
-
EDMEulerScheduler.set_timesteps = set_timesteps_patched
|
| 42 |
|
| 43 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
| 44 |
|
| 45 |
pipe_edit = StableDiffusionXLInstructPix2PixPipeline.from_single_file(
|
| 46 |
edit_file, num_in_channels=8, is_cosxl_edit=True, vae=vae, torch_dtype=torch.float16,
|
| 47 |
)
|
| 48 |
-
pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
|
| 49 |
pipe_edit.to("cuda")
|
| 50 |
|
| 51 |
pipe_normal = StableDiffusionXLPipeline.from_single_file(normal_file, torch_dtype=torch.float16, vae=vae)
|
| 52 |
-
pipe_normal.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
|
| 53 |
pipe_normal.to("cuda")
|
| 54 |
|
| 55 |
@spaces.GPU
|
|
|
|
| 11 |
edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors")
|
| 12 |
normal_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl.safetensors")
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
def resize_image(image, resolution):
|
| 15 |
original_width, original_height = image.size
|
| 16 |
|
|
|
|
| 24 |
resized_img = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
| 25 |
return resized_img
|
| 26 |
|
|
|
|
| 27 |
|
| 28 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
| 29 |
|
| 30 |
pipe_edit = StableDiffusionXLInstructPix2PixPipeline.from_single_file(
|
| 31 |
edit_file, num_in_channels=8, is_cosxl_edit=True, vae=vae, torch_dtype=torch.float16,
|
| 32 |
)
|
| 33 |
+
pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction", sigma_schedule="exponential")
|
| 34 |
pipe_edit.to("cuda")
|
| 35 |
|
| 36 |
pipe_normal = StableDiffusionXLPipeline.from_single_file(normal_file, torch_dtype=torch.float16, vae=vae)
|
| 37 |
+
pipe_normal.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction", sigma_schedule="exponential"s)
|
| 38 |
pipe_normal.to("cuda")
|
| 39 |
|
| 40 |
@spaces.GPU
|