|
|
import cv2 as cv |
|
|
import numpy as np |
|
|
import gradio as gr |
|
|
from huggingface_hub import hf_hub_download |
|
|
from yunet import YuNet |
|
|
from ediffiqa import eDifFIQA |
|
|
|
|
|
|
|
|
model_path_yunet = hf_hub_download( |
|
|
repo_id="opencv/face_detection_yunet", |
|
|
filename="face_detection_yunet_2023mar.onnx" |
|
|
) |
|
|
|
|
|
|
|
|
model_path_quality = hf_hub_download( |
|
|
repo_id="opencv/face_image_quality_assessment_ediffiqa", |
|
|
filename="ediffiqa_tiny_jun2024.onnx" |
|
|
) |
|
|
|
|
|
|
|
|
backend_id = cv.dnn.DNN_BACKEND_OPENCV |
|
|
target_id = cv.dnn.DNN_TARGET_CPU |
|
|
|
|
|
|
|
|
face_detector = YuNet( |
|
|
modelPath=model_path_yunet, |
|
|
inputSize=[320, 320], |
|
|
confThreshold=0.9, |
|
|
nmsThreshold=0.3, |
|
|
topK=5000, |
|
|
backendId=backend_id, |
|
|
targetId=target_id |
|
|
) |
|
|
|
|
|
|
|
|
quality_model = eDifFIQA( |
|
|
modelPath=model_path_quality, |
|
|
inputSize=[112, 112] |
|
|
) |
|
|
quality_model.setBackendAndTarget( |
|
|
backendId=backend_id, |
|
|
targetId=target_id |
|
|
) |
|
|
|
|
|
REFERENCE_FACIAL_POINTS = np.array([ |
|
|
[38.2946 , 51.6963 ], |
|
|
[73.5318 , 51.5014 ], |
|
|
[56.0252 , 71.7366 ], |
|
|
[41.5493 , 92.3655 ], |
|
|
[70.729904, 92.2041 ] |
|
|
], dtype=np.float32) |
|
|
|
|
|
def align_image(image, detection_data): |
|
|
src_pts = np.float32(detection_data[0][4:-1]).reshape(5, 2) |
|
|
tfm, _ = cv.estimateAffinePartial2D(src_pts, REFERENCE_FACIAL_POINTS, method=cv.LMEDS) |
|
|
face_img = cv.warpAffine(image, tfm, (112, 112)) |
|
|
return face_img |
|
|
|
|
|
def assess_face_quality(input_image): |
|
|
bgr_image = cv.cvtColor(input_image, cv.COLOR_RGB2BGR) |
|
|
h, w, _ = bgr_image.shape |
|
|
|
|
|
face_detector.setInputSize([w, h]) |
|
|
detections = face_detector.infer(bgr_image) |
|
|
|
|
|
if detections is None or len(detections) == 0: |
|
|
return "No face detected.", input_image |
|
|
|
|
|
aligned_face = align_image(bgr_image, detections) |
|
|
score = np.squeeze(quality_model.infer(aligned_face)).item() |
|
|
|
|
|
output_image = aligned_face.copy() |
|
|
cv.putText(output_image, f"{score:.3f}", (0, 20), cv.FONT_HERSHEY_DUPLEX, 0.8, (0, 0, 255), 2) |
|
|
output_image = cv.cvtColor(output_image, cv.COLOR_BGR2RGB) |
|
|
|
|
|
return f"Quality Score: {score:.3f}", output_image |
|
|
|
|
|
|
|
|
demo = gr.Interface( |
|
|
fn=assess_face_quality, |
|
|
inputs=gr.Image(type="numpy", label="Upload Face Image"), |
|
|
outputs=[ |
|
|
gr.Text(label="Quality Score"), |
|
|
gr.Image(type="numpy", label="Aligned Face with Score") |
|
|
], |
|
|
title="Face Image Quality Assessment (eDifFIQA + YuNet)", |
|
|
allow_flagging="never", |
|
|
description="Upload a face image. The app detects and aligns the face, then evaluates image quality using the eDifFIQA model." |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |
|
|
|