File size: 23,846 Bytes
ebf3517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d75ea89
ebf3517
 
 
 
 
 
 
 
d75ea89
 
 
 
ebf3517
 
 
d75ea89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebf3517
 
 
d75ea89
 
 
 
 
 
 
 
 
 
 
 
 
 
ebf3517
 
 
 
d75ea89
ebf3517
 
eef5e48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
619f302
eef5e48
 
 
 
 
3884b88
619f302
d75ea89
 
 
619f302
ebf3517
619f302
d75ea89
 
 
619f302
 
 
 
 
d75ea89
 
 
ebf3517
4864b52
619f302
d75ea89
 
 
 
 
619f302
d75ea89
 
 
 
 
ebf3517
4864b52
d75ea89
619f302
 
 
 
 
 
 
ebf3517
619f302
 
 
 
ebf3517
d75ea89
619f302
 
 
 
d75ea89
 
 
ebf3517
d75ea89
619f302
 
 
 
 
 
 
 
 
 
 
 
ebf3517
d75ea89
 
619f302
 
 
4864b52
619f302
 
 
4864b52
 
d75ea89
4864b52
619f302
 
 
ebf3517
619f302
 
 
ebf3517
 
d75ea89
 
ebf3517
d75ea89
 
619f302
 
d75ea89
 
 
619f302
 
d75ea89
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
"""

Codey Bryant 3.0 β€” SOTA RAG for Hugging Face Spaces

Maintains EXACT same architecture: HyDE + Query Rewriting + Multi-Query + Answer-Space Retrieval

"""

import os
import sys
import logging
from dataclasses import dataclass
from typing import List, Dict, Tuple, Optional, Iterator
from functools import lru_cache
from threading import Thread
import warnings

# Configure logging for Hugging Face Spaces
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.StreamHandler(sys.stdout),
        logging.FileHandler('/data/app.log')
    ]
)
logger = logging.getLogger(__name__)
warnings.filterwarnings("ignore")

# Import core dependencies
import numpy as np
import torch
from datasets import load_dataset, Dataset
from sentence_transformers import SentenceTransformer
from rank_bm25 import BM25Okapi
from sklearn.cluster import MiniBatchKMeans
import spacy
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    GenerationConfig,
    TextIteratorStreamer,
    BitsAndBytesConfig,
)
import gradio as gr
import pickle
import json

# Try to import FAISS
try:
    import faiss
    FAISS_AVAILABLE = True
except ImportError:
    FAISS_AVAILABLE = False
    logger.warning("FAISS not available, using numpy fallback")

# Environment setup for Hugging Face Spaces
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"

# Use persistent storage for Hugging Face Spaces
ARTIFACT_DIR = os.environ.get("ARTIFACT_DIR", "/data/artifacts")
os.makedirs(ARTIFACT_DIR, exist_ok=True)

# Paths for artifacts
LLM_ARTIFACT_PATH = os.path.join(ARTIFACT_DIR, "llm_model")
EMBED_ARTIFACT_PATH = os.path.join(ARTIFACT_DIR, "embed_model")
BM25_ARTIFACT_PATH = os.path.join(ARTIFACT_DIR, "bm25.pkl")
CORPUS_DATA_PATH = os.path.join(ARTIFACT_DIR, "corpus_data.json")
CORPUS_EMBED_PATH = os.path.join(ARTIFACT_DIR, "corpus_embeddings.npy")
ANSWER_EMBED_PATH = os.path.join(ARTIFACT_DIR, "answer_embeddings.npy")
FAISS_INDEX_PATH = os.path.join(ARTIFACT_DIR, "faiss_index.bin")

# Device configuration
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.benchmark = True
    logger.info(f"Using GPU: {torch.cuda.get_device_name(0)}")
else:
    logger.info("Using CPU")

# Model configuration (EXACT SAME AS BEFORE)
MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
EMBED_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
MAX_CORPUS_SIZE = 600

# ========================
# 1) Dataset & Retrieval (EXACT SAME)
# ========================

def load_opc_datasets() -> Dict[str, Dataset]:
    """Load coding datasets - same function"""
    try:
        logger.info("Loading OPC datasets...")
        ds_instruct = load_dataset("OpenCoder-LLM/opc-sft-stage2", "educational_instruct", split="train")
        ds_evol = load_dataset("OpenCoder-LLM/opc-sft-stage2", "evol_instruct", split="train")
        return {"educational_instruct": ds_instruct, "evol_instruct": ds_evol}
    except Exception as e:
        logger.warning(f"OPC failed ({e}), falling back to python_code_instructions...")
        ds = load_dataset("iamtarun/python_code_instructions_18k_alpaca", split="train")
        return {"python_code": ds}

def convo_to_io(example: Dict) -> Tuple[str, str]:
    """Convert conversation to input/output - same function"""
    if "messages" in example:
        msgs = example["messages"]
    elif "conversations" in example:
        msgs = example["conversations"]
    else:
        instr = example.get("instruction") or example.get("prompt") or ""
        inp = example.get("input") or ""
        out = example.get("output") or example.get("response") or ""
        return (instr + "\n" + inp).strip(), out

    user_text, assistant_text = "", ""
    for i, m in enumerate(msgs):
        role = (m.get("role") or m.get("from") or "").lower()
        content = m.get("content") or m.get("value") or ""
        if role in ("user", "human") and not user_text:
            user_text = content
        if role in ("assistant", "gpt") and user_text:
            assistant_text = content
            break
    return user_text.strip(), assistant_text.strip()

@dataclass
class RetrievalSystem:
    """Retrieval system dataclass - same structure"""
    embed_model: SentenceTransformer
    bm25: BM25Okapi
    corpus_texts: List[str]
    corpus_answers: List[str]
    corpus_embeddings: np.ndarray
    answer_embeddings: np.ndarray
    corpus_meta: List[Dict]
    nlp: spacy.language.Language
    faiss_index: Optional[any] = None

def build_retrieval_system(ds_map: Dict[str, Dataset]) -> RetrievalSystem:
    """Build retrieval system - EXACT SAME IMPLEMENTATION"""
    # Try to load from artifacts first
    required = [EMBED_ARTIFACT_PATH, BM25_ARTIFACT_PATH, CORPUS_DATA_PATH, CORPUS_EMBED_PATH, ANSWER_EMBED_PATH]
    if FAISS_AVAILABLE:
        required.append(FAISS_INDEX_PATH)

    if all(os.path.exists(p) for p in required):
        logger.info("Loading retrieval system from artifacts...")
        embed_model = SentenceTransformer(EMBED_ARTIFACT_PATH, device=str(DEVICE))
        with open(BM25_ARTIFACT_PATH, "rb") as f:
            bm25 = pickle.load(f)
        with open(CORPUS_DATA_PATH, "r", encoding="utf-8") as f:
            data = json.load(f)
        corpus_embeddings = np.load(CORPUS_EMBED_PATH)
        answer_embeddings = np.load(ANSWER_EMBED_PATH)
        faiss_index = faiss.read_index(FAISS_INDEX_PATH) if FAISS_AVAILABLE and os.path.exists(FAISS_INDEX_PATH) else None
        nlp = spacy.load("en_core_web_sm", disable=["parser", "ner"])
        return RetrievalSystem(
            embed_model=embed_model, bm25=bm25,
            corpus_texts=data["texts"], corpus_answers=data["answers"],
            corpus_embeddings=corpus_embeddings, answer_embeddings=answer_embeddings,
            corpus_meta=data["meta"], nlp=nlp, faiss_index=faiss_index
        )

    # Build from scratch (same implementation)
    logger.info("Building retrieval system with answer-space support...")
    all_questions, all_answers, all_metas = [], [], []
    for name, ds in ds_map.items():
        for ex in ds.select(range(min(len(ds), 1500))):
            q, a = convo_to_io(ex)
            if q and a and 50 < len(a) < 2000:
                all_questions.append(q)
                all_answers.append(a)
                all_metas.append({"intent": name, "answer": a})

    embed_model = SentenceTransformer(EMBED_MODEL, device=str(DEVICE))
    question_embeddings = embed_model.encode(all_questions, batch_size=64, show_progress_bar=True, normalize_embeddings=True)
    answer_embeddings = embed_model.encode(all_answers, batch_size=64, show_progress_bar=True, normalize_embeddings=True)

    # Clustering to reduce size (same)
    if len(all_questions) > MAX_CORPUS_SIZE:
        kmeans = MiniBatchKMeans(n_clusters=MAX_CORPUS_SIZE, random_state=42, batch_size=1000)
        labels = kmeans.fit_predict(answer_embeddings)
        selected = []
        for i in range(MAX_CORPUS_SIZE):
            mask = labels == i
            if mask.any():
                idx = np.where(mask)[0]
                dists = np.linalg.norm(answer_embeddings[idx] - kmeans.cluster_centers_[i], axis=1)
                selected.append(idx[np.argmin(dists)])
        idxs = selected
    else:
        idxs = list(range(len(all_questions)))

    texts = [all_questions[i] for i in idxs]
    answers = [all_answers[i] for i in idxs]
    metas = [all_metas[i] for i in idxs]
    q_embs = question_embeddings[idxs]
    a_embs = answer_embeddings[idxs]

    tokenized = [t.lower().split() for t in texts]
    bm25 = BM25Okapi(tokenized)

    faiss_index = None
    if FAISS_AVAILABLE:
        faiss_index = faiss.IndexFlatIP(a_embs.shape[1])
        faiss_index.add(a_embs.astype('float32'))

    # Save everything
    embed_model.save(EMBED_ARTIFACT_PATH)
    with open(BM25_ARTIFACT_PATH, "wb") as f:
        pickle.dump(bm25, f)
    with open(CORPUS_DATA_PATH, "w", encoding="utf-8") as f:
        json.dump({"texts": texts, "answers": answers, "meta": metas}, f)
    np.save(CORPUS_EMBED_PATH, q_embs)
    np.save(ANSWER_EMBED_PATH, a_embs)
    if faiss_index:
        faiss.write_index(faiss_index, FAISS_INDEX_PATH)

    nlp = spacy.load("en_core_web_sm", disable=["parser", "ner"])
    return RetrievalSystem(
        embed_model=embed_model, bm25=bm25, corpus_texts=texts, corpus_answers=answers,
        corpus_embeddings=q_embs, answer_embeddings=a_embs, corpus_meta=metas,
        nlp=nlp, faiss_index=faiss_index
    )

# ========================
# 2) Generative Core (EXACT SAME)
# ========================

@dataclass
class GenerativeCore:
    """Generative core dataclass - same structure"""
    model: AutoModelForCausalLM
    tokenizer: AutoTokenizer
    generation_config: GenerationConfig

def build_generative_core():
    """Build generative core - EXACT SAME IMPLEMENTATION"""
    # Always download fresh from HuggingFace for reliability
    print("Downloading TinyLlama with 4-bit quantization...")
    
    tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    
    tokenizer.chat_template = (
        "{% for message in messages %}"
        "{{'<|'+message['role']+'|>\\n'+message['content']+'</s>\\n'}}"
        "{% endfor %}"
        "{% if add_generation_prompt %}"
        "<|assistant|>\n"
        "{% endif %}"
    )
    
    quantization_config = None
    if torch.cuda.is_available():
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.float32,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4"
        )
    
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_NAME,
        quantization_config=quantization_config,
        device_map="auto" if torch.cuda.is_available() else None,
        low_cpu_mem_usage=True
    )
    model.eval()
    
    gen_cfg = GenerationConfig(
        max_new_tokens=300,
        temperature=0.7,
        top_p=0.9,
        do_sample=True,
        repetition_penalty=1.15,
        pad_token_id=tokenizer.pad_token_id
    )
    
    # Save for future use (optional)
    if not os.path.exists(LLM_ARTIFACT_PATH):
        os.makedirs(LLM_ARTIFACT_PATH, exist_ok=True)
        tokenizer.save_pretrained(LLM_ARTIFACT_PATH)
        gen_cfg.save_pretrained(LLM_ARTIFACT_PATH)
    
    return GenerativeCore(model, tokenizer, gen_cfg)

# 3) SOTA Enhanced Retrieval (EXACT SAME)

class HybridCodeAssistant:
    """Main assistant class - EXACT SAME IMPLEMENTATION"""
    def __init__(self):
        self.retrieval = build_retrieval_system(load_opc_datasets())
        self.generator = build_generative_core()
        logger.info("Codey Bryant 3.0 ready with HyDE + Query Rewriting + Multi-Query + Answer-Space Retrieval!")

    def generate_hyde(self, query: str) -> str:
        """Generate HyDE - same implementation"""
        prompt = f"""Write a concise, direct Python code example or explanation that answers this question.

Only output the answer, no extra text.



Question: {query}



Answer:"""
        inputs = self.generator.tokenizer(prompt, return_tensors="pt").to(DEVICE)
        with torch.no_grad():
            out = self.generator.model.generate(**inputs, max_new_tokens=128, temperature=0.3, do_sample=True)
        return self.generator.tokenizer.decode(out[0], skip_special_tokens=True).split("Answer:")[-1].strip()

    def rewrite_query(self, query: str) -> str:
        """Rewrite query - same implementation"""
        prompt = f"""Rewrite this vague or casual programming question into a clear, specific one for better code retrieval.



Original: {query}



Improved:"""
        inputs = self.generator.tokenizer(prompt, return_tensors="pt").to(DEVICE)
        with torch.no_grad():
            out = self.generator.model.generate(**inputs, max_new_tokens=64, temperature=0.1)
        return self.generator.tokenizer.decode(out[0], skip_special_tokens=True).split("Improved:")[-1].strip()

    def retrieve_enhanced(self, query: str, k: int = 3) -> List[Tuple[str, Dict, float]]:
        """Enhanced retrieval - EXACT SAME IMPLEMENTATION"""
        # Use list of tuples instead of set to avoid hashability issues with dicts
        results = []

        def add_results(q_text: str, weight: float = 1.0):
            try:
                # Determine embedding space (answer for HyDE/long texts, question otherwise)
                use_answer_space = "HyDE" in q_text or len(q_text.split()) > 20
                target_embs = self.retrieval.answer_embeddings if use_answer_space else self.retrieval.corpus_embeddings

                # Encode query
                q_emb = self.retrieval.embed_model.encode(q_text, normalize_embeddings=True)

                if self.retrieval.faiss_index is not None and use_answer_space:
                    # FAISS on answer space
                    query_vec = q_emb.astype('float32').reshape(1, -1)
                    scores_top, indices_top = self.retrieval.faiss_index.search(query_vec, min(k * 3, len(self.retrieval.corpus_texts)))
                    scores = scores_top[0]
                    idxs = indices_top[0]
                else:
                    # Numpy fallback or question space
                    scores = np.dot(target_embs, q_emb)
                    idxs = np.argsort(-scores)[:k*3]

                # Add BM25 if not answer space
                if not use_answer_space:
                    tokenized_query = q_text.lower().split()
                    bm25_scores = self.retrieval.bm25.get_scores(tokenized_query)
                    if bm25_scores.max() > 0:
                        bm25_scores = (bm25_scores - bm25_scores.min()) / (bm25_scores.max() - bm25_scores.min())
                    else:
                        bm25_scores = np.zeros_like(bm25_scores)
                    scores = 0.3 * bm25_scores + 0.7 * scores  # Hybrid

                # Collect candidates (avoid duplicates by checking text)
                seen_texts = set()
                for score, idx in zip(scores, idxs):
                    if score > 0.15 and idx < len(self.retrieval.corpus_texts):
                        text = self.retrieval.corpus_texts[idx]
                        if text not in seen_texts:
                            seen_texts.add(text)
                            results.append((text, self.retrieval.corpus_meta[idx], float(score * weight)))
            except Exception as e:
                logger.error(f"add_results failed for '{q_text}': {e}")

        # 1. Original query
        add_results(query, weight=1.0)

        # 2. Rewritten query
        try:
            rw = self.rewrite_query(query)
            if len(rw) > 8 and rw != query:
                add_results(rw, weight=1.2)
        except Exception as e:
            logger.warning(f"Rewrite failed: {e}")

        # 3. HyDE (strong weight in answer space!)
        try:
            hyde = self.generate_hyde(query)
            if len(hyde) > 20:
                add_results(hyde, weight=1.5)  # Note: No " HyDE" suffix needed now
        except Exception as e:
            logger.warning(f"HyDE failed: {e}")

        # 4. Multi-query variants (lighter weight)
        variants = [
            f"Python code for: {query}",
            f"Fix error: {query}",
            f"Explain in Python: {query}",
            f"Best way to {query} in Python",
        ]
        for v in variants:
            add_results(v, weight=0.8)

        # Rerank by similarity to original (no set needed)
        if not results:
            return []

        q_emb = self.retrieval.embed_model.encode(query, normalize_embeddings=True)
        final = []
        for text, meta, score in results:
            text_emb = self.retrieval.embed_model.encode(text, normalize_embeddings=True)
            sim = float(np.dot(q_emb, text_emb))
            final.append((text, meta, score + 0.3 * sim))

        final.sort(key=lambda x: x[2], reverse=True)
        return final[:k]

    def answer_stream(self, text: str) -> Iterator[str]:
        """Stream answer with proper message formatting"""
        retrieved = self.retrieve_enhanced(text, k=3)

        context = ""
        if retrieved and retrieved[0][2] > 0.3:
            q, meta, _ = retrieved[0]
            ans = meta["answer"][:200]
            context = f"Reference example:\nQ: {q}\nA: {ans}\n\n"

        # Create properly formatted messages
        system_content = "You are a concise, accurate Python coding assistant. " + context.strip()
        
        # Format messages for TinyLlama chat template
        messages = [
            {"role": "user", "content": text}
        ]
        
        # Add system message if context exists
        if context:
            messages.insert(0, {"role": "system", "content": system_content})
        
        # Debug: Print messages format
        logger.debug(f"Messages format: {messages}")
        
        try:
            # Apply chat template
            prompt = self.generator.tokenizer.apply_chat_template(
                messages, 
                tokenize=False, 
                add_generation_prompt=True
            )
            
            logger.debug(f"Generated prompt length: {len(prompt)}")
            
        except Exception as e:
            logger.error(f"Error applying chat template: {e}")
            # Fallback: Use simple formatting
            if context:
                prompt = f"<|system|>\n{system_content}</s>\n<|user|>\n{text}</s>\n<|assistant|>\n"
            else:
                prompt = f"<|user|>\n{text}</s>\n<|assistant|>\n"

        inputs = self.generator.tokenizer(prompt, return_tensors="pt").to(DEVICE)

        streamer = TextIteratorStreamer(
            self.generator.tokenizer, 
            skip_prompt=True, 
            skip_special_tokens=True
        )
        
        generation_kwargs = dict(
            **inputs,
            streamer=streamer,
            generation_config=self.generator.generation_config,
            max_new_tokens=300
        )
        
        thread = Thread(target=self.generator.model.generate, kwargs=generation_kwargs)
        thread.start()

        for token in streamer:
            yield token
        
        thread.join()

ASSISTANT: Optional[HybridCodeAssistant] = None

def initialize_assistant():
    """Initialize assistant with progress tracking"""
    global ASSISTANT
    if ASSISTANT is None:
        yield "Initializing Codey Bryant 3.0..."
        yield "Loading retrieval system..."
        ASSISTANT = HybridCodeAssistant()
        yield "Codey Bryant 3.0 Ready!"
        yield "SOTA RAG Features: HyDE + Query Rewriting + Multi-Query + Answer-Space Retrieval"
        yield "Ask coding questions like: 'it's not working', 'help with error', 'make it faster'"
    else:
        yield "Assistant already initialized!"

def chat(message: str, history: list):
    """Chat function with error handling"""
    if ASSISTANT is None:
        yield "Please click 'Initialize Assistant' first!"
        return

    # Append user message
    history.append([message, ""])
    yield history

    # Stream response
    try:
        response = ""
        for token in ASSISTANT.answer_stream(message):
            response += token
            history[-1][1] = response
            yield history
    except Exception as e:
        logger.error(f"Chat error: {e}")
        history[-1][1] = f"Error: {str(e)}"
        yield history

# 5) Main Entry Point - SIMPLE WORKING UI

if __name__ == "__main__":
    # Configure for Hugging Face Spaces
    server_name = os.environ.get("GRADIO_SERVER_NAME", "0.0.0.0")
    server_port = int(os.environ.get("GRADIO_SERVER_PORT", 7860))
    
    # SIMPLE, WORKING UI
    with gr.Blocks(title="Codey Bryant 3.0") as demo:
        gr.Markdown("""

        # πŸ€– Codey Bryant 3.0

        ## **SOTA RAG Coding Assistant**

        

        **Advanced Features:** HyDE + Query Rewriting + Multi-Query + Answer-Space Retrieval

        """)
        
        # Status display
        status_output = gr.Textbox(
            label="Status",
            value="Click 'Initialize Assistant' to start",
            interactive=False
        )
        
        # Initialize button
        init_btn = gr.Button("πŸš€ Initialize Assistant", variant="primary")
        
        # Chat interface
        chatbot = gr.Chatbot(label="Chat", height=500)
        
        with gr.Row():
            msg = gr.Textbox(
                placeholder="Ask Python coding questions...",
                label="Your Question",
                lines=2,
                scale=4
            )
            submit_btn = gr.Button("Send", variant="secondary", scale=1)
        
        clear_btn = gr.Button("Clear Chat")
        
        # Event handlers
        def on_init():
            """Handle initialization and update status"""
            status_text = ""
            for status in initialize_assistant():
                status_text = status
                yield status
            # Enable the chat interface after initialization
            yield status_text
        
        init_btn.click(
            fn=on_init,
            outputs=status_output
        )
        
        def process_message(message, chat_history):
            """Process a new message"""
            if not message.strip():
                return "", chat_history
            
            # Add user message
            chat_history.append([message, ""])
            return "", chat_history
        
        def generate_response(message, chat_history):
            """Generate response from assistant"""
            if not message.strip():
                yield chat_history
                return
            
            try:
                # Get streaming response
                for updated_history in chat(message, chat_history):
                    yield updated_history
            except Exception as e:
                chat_history[-1][1] = f"Error: {str(e)}"
                yield chat_history
        
        # Connect submit button
        submit_btn.click(
            fn=process_message,
            inputs=[msg, chatbot],
            outputs=[msg, chatbot]
        ).then(
            fn=generate_response,
            inputs=[msg, chatbot],
            outputs=chatbot
        )
        
        # Connect Enter key
        msg.submit(
            fn=process_message,
            inputs=[msg, chatbot],
            outputs=[msg, chatbot]
        ).then(
            fn=generate_response,
            inputs=[msg, chatbot],
            outputs=chatbot
        )
        
        # Clear chat
        clear_btn.click(lambda: [], None, chatbot)
    
    # Launch the app
    logger.info(f"Starting Codey Bryant 3.0 on {server_name}:{server_port}")
    logger.info("SOTA RAG Architecture: HyDE + Query Rewriting + Multi-Query + Answer-Space Retrieval")
    
    demo.launch(
        server_name=server_name,
        server_port=server_port,
        share=False,
        debug=False
    )