Spaces:
Sleeping
Sleeping
File size: 23,846 Bytes
ebf3517 d75ea89 ebf3517 d75ea89 ebf3517 d75ea89 ebf3517 d75ea89 ebf3517 d75ea89 ebf3517 eef5e48 619f302 eef5e48 3884b88 619f302 d75ea89 619f302 ebf3517 619f302 d75ea89 619f302 d75ea89 ebf3517 4864b52 619f302 d75ea89 619f302 d75ea89 ebf3517 4864b52 d75ea89 619f302 ebf3517 619f302 ebf3517 d75ea89 619f302 d75ea89 ebf3517 d75ea89 619f302 ebf3517 d75ea89 619f302 4864b52 619f302 4864b52 d75ea89 4864b52 619f302 ebf3517 619f302 ebf3517 d75ea89 ebf3517 d75ea89 619f302 d75ea89 619f302 d75ea89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 |
"""
Codey Bryant 3.0 β SOTA RAG for Hugging Face Spaces
Maintains EXACT same architecture: HyDE + Query Rewriting + Multi-Query + Answer-Space Retrieval
"""
import os
import sys
import logging
from dataclasses import dataclass
from typing import List, Dict, Tuple, Optional, Iterator
from functools import lru_cache
from threading import Thread
import warnings
# Configure logging for Hugging Face Spaces
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(sys.stdout),
logging.FileHandler('/data/app.log')
]
)
logger = logging.getLogger(__name__)
warnings.filterwarnings("ignore")
# Import core dependencies
import numpy as np
import torch
from datasets import load_dataset, Dataset
from sentence_transformers import SentenceTransformer
from rank_bm25 import BM25Okapi
from sklearn.cluster import MiniBatchKMeans
import spacy
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
GenerationConfig,
TextIteratorStreamer,
BitsAndBytesConfig,
)
import gradio as gr
import pickle
import json
# Try to import FAISS
try:
import faiss
FAISS_AVAILABLE = True
except ImportError:
FAISS_AVAILABLE = False
logger.warning("FAISS not available, using numpy fallback")
# Environment setup for Hugging Face Spaces
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
# Use persistent storage for Hugging Face Spaces
ARTIFACT_DIR = os.environ.get("ARTIFACT_DIR", "/data/artifacts")
os.makedirs(ARTIFACT_DIR, exist_ok=True)
# Paths for artifacts
LLM_ARTIFACT_PATH = os.path.join(ARTIFACT_DIR, "llm_model")
EMBED_ARTIFACT_PATH = os.path.join(ARTIFACT_DIR, "embed_model")
BM25_ARTIFACT_PATH = os.path.join(ARTIFACT_DIR, "bm25.pkl")
CORPUS_DATA_PATH = os.path.join(ARTIFACT_DIR, "corpus_data.json")
CORPUS_EMBED_PATH = os.path.join(ARTIFACT_DIR, "corpus_embeddings.npy")
ANSWER_EMBED_PATH = os.path.join(ARTIFACT_DIR, "answer_embeddings.npy")
FAISS_INDEX_PATH = os.path.join(ARTIFACT_DIR, "faiss_index.bin")
# Device configuration
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True
logger.info(f"Using GPU: {torch.cuda.get_device_name(0)}")
else:
logger.info("Using CPU")
# Model configuration (EXACT SAME AS BEFORE)
MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
EMBED_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
MAX_CORPUS_SIZE = 600
# ========================
# 1) Dataset & Retrieval (EXACT SAME)
# ========================
def load_opc_datasets() -> Dict[str, Dataset]:
"""Load coding datasets - same function"""
try:
logger.info("Loading OPC datasets...")
ds_instruct = load_dataset("OpenCoder-LLM/opc-sft-stage2", "educational_instruct", split="train")
ds_evol = load_dataset("OpenCoder-LLM/opc-sft-stage2", "evol_instruct", split="train")
return {"educational_instruct": ds_instruct, "evol_instruct": ds_evol}
except Exception as e:
logger.warning(f"OPC failed ({e}), falling back to python_code_instructions...")
ds = load_dataset("iamtarun/python_code_instructions_18k_alpaca", split="train")
return {"python_code": ds}
def convo_to_io(example: Dict) -> Tuple[str, str]:
"""Convert conversation to input/output - same function"""
if "messages" in example:
msgs = example["messages"]
elif "conversations" in example:
msgs = example["conversations"]
else:
instr = example.get("instruction") or example.get("prompt") or ""
inp = example.get("input") or ""
out = example.get("output") or example.get("response") or ""
return (instr + "\n" + inp).strip(), out
user_text, assistant_text = "", ""
for i, m in enumerate(msgs):
role = (m.get("role") or m.get("from") or "").lower()
content = m.get("content") or m.get("value") or ""
if role in ("user", "human") and not user_text:
user_text = content
if role in ("assistant", "gpt") and user_text:
assistant_text = content
break
return user_text.strip(), assistant_text.strip()
@dataclass
class RetrievalSystem:
"""Retrieval system dataclass - same structure"""
embed_model: SentenceTransformer
bm25: BM25Okapi
corpus_texts: List[str]
corpus_answers: List[str]
corpus_embeddings: np.ndarray
answer_embeddings: np.ndarray
corpus_meta: List[Dict]
nlp: spacy.language.Language
faiss_index: Optional[any] = None
def build_retrieval_system(ds_map: Dict[str, Dataset]) -> RetrievalSystem:
"""Build retrieval system - EXACT SAME IMPLEMENTATION"""
# Try to load from artifacts first
required = [EMBED_ARTIFACT_PATH, BM25_ARTIFACT_PATH, CORPUS_DATA_PATH, CORPUS_EMBED_PATH, ANSWER_EMBED_PATH]
if FAISS_AVAILABLE:
required.append(FAISS_INDEX_PATH)
if all(os.path.exists(p) for p in required):
logger.info("Loading retrieval system from artifacts...")
embed_model = SentenceTransformer(EMBED_ARTIFACT_PATH, device=str(DEVICE))
with open(BM25_ARTIFACT_PATH, "rb") as f:
bm25 = pickle.load(f)
with open(CORPUS_DATA_PATH, "r", encoding="utf-8") as f:
data = json.load(f)
corpus_embeddings = np.load(CORPUS_EMBED_PATH)
answer_embeddings = np.load(ANSWER_EMBED_PATH)
faiss_index = faiss.read_index(FAISS_INDEX_PATH) if FAISS_AVAILABLE and os.path.exists(FAISS_INDEX_PATH) else None
nlp = spacy.load("en_core_web_sm", disable=["parser", "ner"])
return RetrievalSystem(
embed_model=embed_model, bm25=bm25,
corpus_texts=data["texts"], corpus_answers=data["answers"],
corpus_embeddings=corpus_embeddings, answer_embeddings=answer_embeddings,
corpus_meta=data["meta"], nlp=nlp, faiss_index=faiss_index
)
# Build from scratch (same implementation)
logger.info("Building retrieval system with answer-space support...")
all_questions, all_answers, all_metas = [], [], []
for name, ds in ds_map.items():
for ex in ds.select(range(min(len(ds), 1500))):
q, a = convo_to_io(ex)
if q and a and 50 < len(a) < 2000:
all_questions.append(q)
all_answers.append(a)
all_metas.append({"intent": name, "answer": a})
embed_model = SentenceTransformer(EMBED_MODEL, device=str(DEVICE))
question_embeddings = embed_model.encode(all_questions, batch_size=64, show_progress_bar=True, normalize_embeddings=True)
answer_embeddings = embed_model.encode(all_answers, batch_size=64, show_progress_bar=True, normalize_embeddings=True)
# Clustering to reduce size (same)
if len(all_questions) > MAX_CORPUS_SIZE:
kmeans = MiniBatchKMeans(n_clusters=MAX_CORPUS_SIZE, random_state=42, batch_size=1000)
labels = kmeans.fit_predict(answer_embeddings)
selected = []
for i in range(MAX_CORPUS_SIZE):
mask = labels == i
if mask.any():
idx = np.where(mask)[0]
dists = np.linalg.norm(answer_embeddings[idx] - kmeans.cluster_centers_[i], axis=1)
selected.append(idx[np.argmin(dists)])
idxs = selected
else:
idxs = list(range(len(all_questions)))
texts = [all_questions[i] for i in idxs]
answers = [all_answers[i] for i in idxs]
metas = [all_metas[i] for i in idxs]
q_embs = question_embeddings[idxs]
a_embs = answer_embeddings[idxs]
tokenized = [t.lower().split() for t in texts]
bm25 = BM25Okapi(tokenized)
faiss_index = None
if FAISS_AVAILABLE:
faiss_index = faiss.IndexFlatIP(a_embs.shape[1])
faiss_index.add(a_embs.astype('float32'))
# Save everything
embed_model.save(EMBED_ARTIFACT_PATH)
with open(BM25_ARTIFACT_PATH, "wb") as f:
pickle.dump(bm25, f)
with open(CORPUS_DATA_PATH, "w", encoding="utf-8") as f:
json.dump({"texts": texts, "answers": answers, "meta": metas}, f)
np.save(CORPUS_EMBED_PATH, q_embs)
np.save(ANSWER_EMBED_PATH, a_embs)
if faiss_index:
faiss.write_index(faiss_index, FAISS_INDEX_PATH)
nlp = spacy.load("en_core_web_sm", disable=["parser", "ner"])
return RetrievalSystem(
embed_model=embed_model, bm25=bm25, corpus_texts=texts, corpus_answers=answers,
corpus_embeddings=q_embs, answer_embeddings=a_embs, corpus_meta=metas,
nlp=nlp, faiss_index=faiss_index
)
# ========================
# 2) Generative Core (EXACT SAME)
# ========================
@dataclass
class GenerativeCore:
"""Generative core dataclass - same structure"""
model: AutoModelForCausalLM
tokenizer: AutoTokenizer
generation_config: GenerationConfig
def build_generative_core():
"""Build generative core - EXACT SAME IMPLEMENTATION"""
# Always download fresh from HuggingFace for reliability
print("Downloading TinyLlama with 4-bit quantization...")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.chat_template = (
"{% for message in messages %}"
"{{'<|'+message['role']+'|>\\n'+message['content']+'</s>\\n'}}"
"{% endfor %}"
"{% if add_generation_prompt %}"
"<|assistant|>\n"
"{% endif %}"
)
quantization_config = None
if torch.cuda.is_available():
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float32,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
quantization_config=quantization_config,
device_map="auto" if torch.cuda.is_available() else None,
low_cpu_mem_usage=True
)
model.eval()
gen_cfg = GenerationConfig(
max_new_tokens=300,
temperature=0.7,
top_p=0.9,
do_sample=True,
repetition_penalty=1.15,
pad_token_id=tokenizer.pad_token_id
)
# Save for future use (optional)
if not os.path.exists(LLM_ARTIFACT_PATH):
os.makedirs(LLM_ARTIFACT_PATH, exist_ok=True)
tokenizer.save_pretrained(LLM_ARTIFACT_PATH)
gen_cfg.save_pretrained(LLM_ARTIFACT_PATH)
return GenerativeCore(model, tokenizer, gen_cfg)
# 3) SOTA Enhanced Retrieval (EXACT SAME)
class HybridCodeAssistant:
"""Main assistant class - EXACT SAME IMPLEMENTATION"""
def __init__(self):
self.retrieval = build_retrieval_system(load_opc_datasets())
self.generator = build_generative_core()
logger.info("Codey Bryant 3.0 ready with HyDE + Query Rewriting + Multi-Query + Answer-Space Retrieval!")
def generate_hyde(self, query: str) -> str:
"""Generate HyDE - same implementation"""
prompt = f"""Write a concise, direct Python code example or explanation that answers this question.
Only output the answer, no extra text.
Question: {query}
Answer:"""
inputs = self.generator.tokenizer(prompt, return_tensors="pt").to(DEVICE)
with torch.no_grad():
out = self.generator.model.generate(**inputs, max_new_tokens=128, temperature=0.3, do_sample=True)
return self.generator.tokenizer.decode(out[0], skip_special_tokens=True).split("Answer:")[-1].strip()
def rewrite_query(self, query: str) -> str:
"""Rewrite query - same implementation"""
prompt = f"""Rewrite this vague or casual programming question into a clear, specific one for better code retrieval.
Original: {query}
Improved:"""
inputs = self.generator.tokenizer(prompt, return_tensors="pt").to(DEVICE)
with torch.no_grad():
out = self.generator.model.generate(**inputs, max_new_tokens=64, temperature=0.1)
return self.generator.tokenizer.decode(out[0], skip_special_tokens=True).split("Improved:")[-1].strip()
def retrieve_enhanced(self, query: str, k: int = 3) -> List[Tuple[str, Dict, float]]:
"""Enhanced retrieval - EXACT SAME IMPLEMENTATION"""
# Use list of tuples instead of set to avoid hashability issues with dicts
results = []
def add_results(q_text: str, weight: float = 1.0):
try:
# Determine embedding space (answer for HyDE/long texts, question otherwise)
use_answer_space = "HyDE" in q_text or len(q_text.split()) > 20
target_embs = self.retrieval.answer_embeddings if use_answer_space else self.retrieval.corpus_embeddings
# Encode query
q_emb = self.retrieval.embed_model.encode(q_text, normalize_embeddings=True)
if self.retrieval.faiss_index is not None and use_answer_space:
# FAISS on answer space
query_vec = q_emb.astype('float32').reshape(1, -1)
scores_top, indices_top = self.retrieval.faiss_index.search(query_vec, min(k * 3, len(self.retrieval.corpus_texts)))
scores = scores_top[0]
idxs = indices_top[0]
else:
# Numpy fallback or question space
scores = np.dot(target_embs, q_emb)
idxs = np.argsort(-scores)[:k*3]
# Add BM25 if not answer space
if not use_answer_space:
tokenized_query = q_text.lower().split()
bm25_scores = self.retrieval.bm25.get_scores(tokenized_query)
if bm25_scores.max() > 0:
bm25_scores = (bm25_scores - bm25_scores.min()) / (bm25_scores.max() - bm25_scores.min())
else:
bm25_scores = np.zeros_like(bm25_scores)
scores = 0.3 * bm25_scores + 0.7 * scores # Hybrid
# Collect candidates (avoid duplicates by checking text)
seen_texts = set()
for score, idx in zip(scores, idxs):
if score > 0.15 and idx < len(self.retrieval.corpus_texts):
text = self.retrieval.corpus_texts[idx]
if text not in seen_texts:
seen_texts.add(text)
results.append((text, self.retrieval.corpus_meta[idx], float(score * weight)))
except Exception as e:
logger.error(f"add_results failed for '{q_text}': {e}")
# 1. Original query
add_results(query, weight=1.0)
# 2. Rewritten query
try:
rw = self.rewrite_query(query)
if len(rw) > 8 and rw != query:
add_results(rw, weight=1.2)
except Exception as e:
logger.warning(f"Rewrite failed: {e}")
# 3. HyDE (strong weight in answer space!)
try:
hyde = self.generate_hyde(query)
if len(hyde) > 20:
add_results(hyde, weight=1.5) # Note: No " HyDE" suffix needed now
except Exception as e:
logger.warning(f"HyDE failed: {e}")
# 4. Multi-query variants (lighter weight)
variants = [
f"Python code for: {query}",
f"Fix error: {query}",
f"Explain in Python: {query}",
f"Best way to {query} in Python",
]
for v in variants:
add_results(v, weight=0.8)
# Rerank by similarity to original (no set needed)
if not results:
return []
q_emb = self.retrieval.embed_model.encode(query, normalize_embeddings=True)
final = []
for text, meta, score in results:
text_emb = self.retrieval.embed_model.encode(text, normalize_embeddings=True)
sim = float(np.dot(q_emb, text_emb))
final.append((text, meta, score + 0.3 * sim))
final.sort(key=lambda x: x[2], reverse=True)
return final[:k]
def answer_stream(self, text: str) -> Iterator[str]:
"""Stream answer with proper message formatting"""
retrieved = self.retrieve_enhanced(text, k=3)
context = ""
if retrieved and retrieved[0][2] > 0.3:
q, meta, _ = retrieved[0]
ans = meta["answer"][:200]
context = f"Reference example:\nQ: {q}\nA: {ans}\n\n"
# Create properly formatted messages
system_content = "You are a concise, accurate Python coding assistant. " + context.strip()
# Format messages for TinyLlama chat template
messages = [
{"role": "user", "content": text}
]
# Add system message if context exists
if context:
messages.insert(0, {"role": "system", "content": system_content})
# Debug: Print messages format
logger.debug(f"Messages format: {messages}")
try:
# Apply chat template
prompt = self.generator.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
logger.debug(f"Generated prompt length: {len(prompt)}")
except Exception as e:
logger.error(f"Error applying chat template: {e}")
# Fallback: Use simple formatting
if context:
prompt = f"<|system|>\n{system_content}</s>\n<|user|>\n{text}</s>\n<|assistant|>\n"
else:
prompt = f"<|user|>\n{text}</s>\n<|assistant|>\n"
inputs = self.generator.tokenizer(prompt, return_tensors="pt").to(DEVICE)
streamer = TextIteratorStreamer(
self.generator.tokenizer,
skip_prompt=True,
skip_special_tokens=True
)
generation_kwargs = dict(
**inputs,
streamer=streamer,
generation_config=self.generator.generation_config,
max_new_tokens=300
)
thread = Thread(target=self.generator.model.generate, kwargs=generation_kwargs)
thread.start()
for token in streamer:
yield token
thread.join()
ASSISTANT: Optional[HybridCodeAssistant] = None
def initialize_assistant():
"""Initialize assistant with progress tracking"""
global ASSISTANT
if ASSISTANT is None:
yield "Initializing Codey Bryant 3.0..."
yield "Loading retrieval system..."
ASSISTANT = HybridCodeAssistant()
yield "Codey Bryant 3.0 Ready!"
yield "SOTA RAG Features: HyDE + Query Rewriting + Multi-Query + Answer-Space Retrieval"
yield "Ask coding questions like: 'it's not working', 'help with error', 'make it faster'"
else:
yield "Assistant already initialized!"
def chat(message: str, history: list):
"""Chat function with error handling"""
if ASSISTANT is None:
yield "Please click 'Initialize Assistant' first!"
return
# Append user message
history.append([message, ""])
yield history
# Stream response
try:
response = ""
for token in ASSISTANT.answer_stream(message):
response += token
history[-1][1] = response
yield history
except Exception as e:
logger.error(f"Chat error: {e}")
history[-1][1] = f"Error: {str(e)}"
yield history
# 5) Main Entry Point - SIMPLE WORKING UI
if __name__ == "__main__":
# Configure for Hugging Face Spaces
server_name = os.environ.get("GRADIO_SERVER_NAME", "0.0.0.0")
server_port = int(os.environ.get("GRADIO_SERVER_PORT", 7860))
# SIMPLE, WORKING UI
with gr.Blocks(title="Codey Bryant 3.0") as demo:
gr.Markdown("""
# π€ Codey Bryant 3.0
## **SOTA RAG Coding Assistant**
**Advanced Features:** HyDE + Query Rewriting + Multi-Query + Answer-Space Retrieval
""")
# Status display
status_output = gr.Textbox(
label="Status",
value="Click 'Initialize Assistant' to start",
interactive=False
)
# Initialize button
init_btn = gr.Button("π Initialize Assistant", variant="primary")
# Chat interface
chatbot = gr.Chatbot(label="Chat", height=500)
with gr.Row():
msg = gr.Textbox(
placeholder="Ask Python coding questions...",
label="Your Question",
lines=2,
scale=4
)
submit_btn = gr.Button("Send", variant="secondary", scale=1)
clear_btn = gr.Button("Clear Chat")
# Event handlers
def on_init():
"""Handle initialization and update status"""
status_text = ""
for status in initialize_assistant():
status_text = status
yield status
# Enable the chat interface after initialization
yield status_text
init_btn.click(
fn=on_init,
outputs=status_output
)
def process_message(message, chat_history):
"""Process a new message"""
if not message.strip():
return "", chat_history
# Add user message
chat_history.append([message, ""])
return "", chat_history
def generate_response(message, chat_history):
"""Generate response from assistant"""
if not message.strip():
yield chat_history
return
try:
# Get streaming response
for updated_history in chat(message, chat_history):
yield updated_history
except Exception as e:
chat_history[-1][1] = f"Error: {str(e)}"
yield chat_history
# Connect submit button
submit_btn.click(
fn=process_message,
inputs=[msg, chatbot],
outputs=[msg, chatbot]
).then(
fn=generate_response,
inputs=[msg, chatbot],
outputs=chatbot
)
# Connect Enter key
msg.submit(
fn=process_message,
inputs=[msg, chatbot],
outputs=[msg, chatbot]
).then(
fn=generate_response,
inputs=[msg, chatbot],
outputs=chatbot
)
# Clear chat
clear_btn.click(lambda: [], None, chatbot)
# Launch the app
logger.info(f"Starting Codey Bryant 3.0 on {server_name}:{server_port}")
logger.info("SOTA RAG Architecture: HyDE + Query Rewriting + Multi-Query + Answer-Space Retrieval")
demo.launch(
server_name=server_name,
server_port=server_port,
share=False,
debug=False
) |