project2 / app.py
prat1003's picture
Update app.py
ca5f6c8 verified
import gradio as gr
import tempfile
import shutil
import os
import json
import numpy as np
from pdf2image import convert_from_path
import easyocr
from PyPDF2 import PdfReader
from transformers import pipeline
import random
# -----------------------------
# Initialize OCR and Transformers
# -----------------------------
reader = easyocr.Reader(['en'])
# Question generation model
qg_pipeline = pipeline(
"text2text-generation",
model="valhalla/t5-small-qg-prepend",
tokenizer="t5-small"
)
# Question-answer generation model
qa_pipeline = pipeline(
"text2text-generation",
model="valhalla/t5-small-qa-qg-hl",
tokenizer="t5-small"
)
# -----------------------------
# Extract text from selectable PDFs
# -----------------------------
def extract_text_from_pdf(file_path):
reader_pdf = PdfReader(file_path)
text = ""
for page in reader_pdf.pages:
t = getattr(page, 'extract_text', lambda: None)()
if t:
text += t + "\n"
return text.strip()
# -----------------------------
# Extract text from scanned PDFs using EasyOCR
# -----------------------------
def extract_text_from_scanned_pdf(file_path):
pages = convert_from_path(file_path, dpi=150)
text = ""
for page in pages:
try:
img_array = np.array(page)
result = reader.readtext(img_array, detail=0)
text += " ".join(result) + "\n"
except Exception as e:
print("OCR error on page:", e)
return text.strip()
# -----------------------------
# Generate dummy options
# -----------------------------
def generate_options(correct_answer):
options = [correct_answer]
dummy_opts = [
"None of the above",
"All of the above",
"Not mentioned",
"Cannot be determined",
"Irrelevant information"
]
while len(options) < 4:
opt = random.choice(dummy_opts)
if opt not in options:
options.append(opt)
random.shuffle(options)
return options
# -----------------------------
# Main processing function
# -----------------------------
def process_pdf(pdf_file):
# Save uploaded PDF to temp file
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf:
shutil.copy(pdf_file.name, temp_pdf.name)
temp_pdf_path = temp_pdf.name
# Step 1: Try extracting text from PDF directly
extracted_text = extract_text_from_pdf(temp_pdf_path)
# Step 2: If empty, use OCR
if not extracted_text.strip():
extracted_text = extract_text_from_scanned_pdf(temp_pdf_path)
os.remove(temp_pdf_path)
if not extracted_text.strip():
return "❌ Could not extract text. Make sure the PDF has readable content."
# Step 3: Generate questions
prompt_q = "generate questions: " + extracted_text[:1000]
questions_output = qg_pipeline(prompt_q, max_length=128, num_beams=3, num_return_sequences=3)
# Step 4: Generate answers
prompt_a = "answer questions: " + extracted_text[:1000]
answers_output = qa_pipeline(prompt_a, max_length=64, num_beams=3, num_return_sequences=3)
# Step 5: Build question list
question_list = []
for i, q in enumerate(questions_output):
question = q["generated_text"]
correct_answer = answers_output[i]["generated_text"] if i < len(answers_output) else "N/A"
options = generate_options(correct_answer)
question_list.append({
"questiontext": question,
"questiontype": "single_select",
"marks": 10,
"options": [
{"optiontext": opt, "score": "10" if opt == correct_answer else "0"}
for opt in options
]
})
# Step 6: Build <questiondata> structure
data = {
"title": "Certification Title",
"totalmarks": "50",
"time": "20",
"cutoff": "35",
"failurl": "",
"passurl": "",
"sendpassemail": True,
"questions": json.dumps({"questions": question_list}),
"maxattempts": 3
}
# Step 7: Wrap JSON in XML CDATA
xml_output = "<questiondata><![CDATA[" + json.dumps(data, indent=2) + "]]></questiondata>"
return xml_output
# -----------------------------
# Gradio Interface
# -----------------------------
iface = gr.Interface(
fn=process_pdf,
inputs=gr.File(label="πŸ“„ Upload your PDF"),
outputs="text",
title="PDF β†’ Question & Answer Generator (with OCR)",
description="Uploads a PDF, extracts text (or OCR for scanned PDFs), and generates XML with questions + answers."
)
iface.launch()