prathmeshadsod's picture
Upload 7 files
39377a4 verified
import os
import whisper
from gtts import gTTS
from dotenv import load_dotenv
import openai
import streamlit as st
import tempfile
# Load environment variables
load_dotenv()
# Initialize Whisper Model
@st.cache_resource
def load_whisper_model():
return whisper.load_model("small")
whisper_model = load_whisper_model()
# Streamlit UI
st.title("Conversational AI with Speech-to-Speech Response")
st.write("Record your voice or upload an audio file to start the process.")
# Sidebar Interaction Mode
interaction_mode = st.sidebar.selectbox(
"Choose Interaction Mode:", ["Record Voice", "Upload Audio"]
)
# Record Voice Functionality with st.audio_input
if interaction_mode == "Record Voice":
st.write("Use the audio recorder below to record your voice:")
# Record audio using st.audio_input
audio_data = st.audio_input("Record your voice")
if audio_data:
st.info("Recording received. Processing...")
# Save the audio data to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
temp_audio.write(audio_data.getvalue()) # Use .getvalue() to extract raw bytes
temp_audio_path = temp_audio.name
# Play back the saved audio
st.audio(temp_audio_path, format="audio/wav")
st.success("Audio saved and ready for transcription!")
# Upload Audio Functionality
elif interaction_mode == "Upload Audio":
uploaded_file = st.file_uploader("Upload your audio file (MP3/WAV)", type=["mp3", "wav"])
if uploaded_file is not None:
st.info("File uploaded. Saving...")
# Save the uploaded audio file
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_audio:
temp_audio.write(uploaded_file.read()) # Write uploaded audio content
temp_audio_path = temp_audio.name
# Play back the uploaded audio
st.audio(temp_audio_path, format="audio/mp3")
st.success("Audio uploaded and ready for transcription!")
# Transcribe and Process Audio
if 'temp_audio_path' in locals() and temp_audio_path:
st.write("Processing the audio file for transcription...")
with st.spinner("Transcribing audio..."):
result = whisper_model.transcribe(temp_audio_path)
user_text = result["text"]
st.write("Transcribed Text:", user_text)
st.success("Transcription complete!")
# Generate AI Response
st.write("Generating a conversational response...")
with st.spinner("Generating response..."):
client = openai.OpenAI(
#Uncomment below if you want to use .env file for localhost or other deployment
#api_key=os.environ.get("SAMBANOVA_API_KEY"),
#for streamlit deployment
api_key= st.secrets["SAMBANOVA_API_KEY"],
base_url="https://api.sambanova.ai/v1",
)
response = client.chat.completions.create(
model='Meta-Llama-3.1-8B-Instruct',
messages=[
{"role": "system", "content": (
"You are a kind, empathetic, and intelligent assistant capable of meaningful conversations and emotional support. "
"Your primary goals are: "
"1. To engage in casual, friendly, and supportive conversations when the user seeks companionship or emotional relief. "
"2. To adapt your tone and responses to match the user's mood, providing warmth and encouragement if they seem distressed or seeking emotional support. "
"3. To answer questions accurately and provide explanations when asked, adjusting the depth and length of your answers based on the user's needs. "
"4. To maintain a positive and non-judgmental tone, offering helpful advice or lighthearted dialogue when appropriate. "
"5. To ensure the user feels heard, understood, and valued during every interaction. "
"If the user does not ask a question, keep the conversation engaging and meaningful by responding thoughtfully or with light humor where appropriate."
)},
{"role": "user", "content": user_text},
],
temperature=0.1,
top_p=0.1,
)
answer = response.choices[0].message.content
st.write("Response:", answer)
st.success("Response generated!")
# Convert response text to speech using gTTS
st.write("Converting the response to speech...")
with st.spinner("Converting text to speech..."):
tts = gTTS(text=answer, slow=False)
response_audio_path = "final_response.mp3"
tts.save(response_audio_path)
st.success("Conversion complete!")
# Play and download the response MP3
st.audio(response_audio_path, format="audio/mp3")
st.download_button(
label="Download the Response",
data=open(response_audio_path, "rb"),
file_name="final_response.mp3",
mime="audio/mpeg",
)
# Clean up temporary files
os.remove(temp_audio_path)
os.remove(response_audio_path)