Spaces:
Sleeping
Sleeping
Miroslav Purkrabek
commited on
Commit
·
73e5f29
1
Parent(s):
057cfaa
add webcam demo app
Browse files- webcam_remote_demo.py +294 -0
webcam_remote_demo.py
ADDED
|
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import cv2
|
| 3 |
+
from fastrtc import WebRTC
|
| 4 |
+
import time
|
| 5 |
+
import threading
|
| 6 |
+
import numpy as np
|
| 7 |
+
import mmcv
|
| 8 |
+
from time import sleep
|
| 9 |
+
|
| 10 |
+
from mmpose.apis import inference_topdown
|
| 11 |
+
from mmpose.apis import init_model as init_pose_estimator
|
| 12 |
+
from mmpose.evaluation.functional import nms
|
| 13 |
+
from mmpose.registry import VISUALIZERS
|
| 14 |
+
from mmpose.structures import merge_data_samples
|
| 15 |
+
from mmpose.utils import adapt_mmdet_pipeline
|
| 16 |
+
import hashlib
|
| 17 |
+
|
| 18 |
+
try:
|
| 19 |
+
from mmdet.apis import inference_detector, init_detector
|
| 20 |
+
has_mmdet = True
|
| 21 |
+
except (ImportError, ModuleNotFoundError):
|
| 22 |
+
has_mmdet = False
|
| 23 |
+
|
| 24 |
+
DET_CFG = "demo/mmdetection_cfg/rtmdet_m_640-8xb32_coco-person.py"
|
| 25 |
+
DET_WEIGHTS = "https://download.openmmlab.com/mmpose/v1/projects/rtmpose/rtmdet_m_8xb32-100e_coco-obj365-person-235e8209.pth"
|
| 26 |
+
|
| 27 |
+
POSE_CFG = "configs/body_2d_keypoint/topdown_probmap/coco/td-pm_ProbPose-small_8xb64-210e_coco-256x192.py"
|
| 28 |
+
POSE_WEIGHTS = "models/ProbPose-s.pth"
|
| 29 |
+
|
| 30 |
+
DEVICE = 'cuda:0'
|
| 31 |
+
|
| 32 |
+
# WebRTC configuration for webcam streaming
|
| 33 |
+
rtc_configuration = None
|
| 34 |
+
webcam_constraints = {
|
| 35 |
+
"video": {
|
| 36 |
+
"width": {"exact": 320},
|
| 37 |
+
"height": {"exact": 240},
|
| 38 |
+
"sampleRate": {"ideal": 2, "max": 5}
|
| 39 |
+
}
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class AsyncFrameProcessor:
|
| 44 |
+
"""
|
| 45 |
+
Asynchronous frame processor that handles real-time video stream processing.
|
| 46 |
+
|
| 47 |
+
Maintains single-slot input and output queues to process only the latest frame,
|
| 48 |
+
preventing queue buildup and ensuring real-time performance.
|
| 49 |
+
"""
|
| 50 |
+
|
| 51 |
+
def __init__(self, processing_delay=0.5, startup_delay=0.0):
|
| 52 |
+
"""
|
| 53 |
+
Initialize the async frame processor.
|
| 54 |
+
|
| 55 |
+
Args:
|
| 56 |
+
processing_delay (float): Simulated processing time in seconds
|
| 57 |
+
startup_delay (float): Delay before processing starts
|
| 58 |
+
"""
|
| 59 |
+
self.processing_delay = processing_delay
|
| 60 |
+
self.startup_delay = startup_delay
|
| 61 |
+
self.first_call_time = None
|
| 62 |
+
self.frame_counter = 0
|
| 63 |
+
|
| 64 |
+
# Thread-safe single-slot queues
|
| 65 |
+
self.input_lock = threading.Lock()
|
| 66 |
+
self.output_lock = threading.Lock()
|
| 67 |
+
self.latest_input_frame = None
|
| 68 |
+
self.latest_output_frame = None
|
| 69 |
+
|
| 70 |
+
# Threading components
|
| 71 |
+
self.processing_thread = None
|
| 72 |
+
self.stop_event = threading.Event()
|
| 73 |
+
self.new_frame_signal = threading.Event()
|
| 74 |
+
|
| 75 |
+
# Detector and pose estimator models
|
| 76 |
+
self.pose_model = None
|
| 77 |
+
self.det_model = None
|
| 78 |
+
self.visualizer = None
|
| 79 |
+
self.init_models()
|
| 80 |
+
|
| 81 |
+
# Start background processing
|
| 82 |
+
self._start_processing_thread()
|
| 83 |
+
|
| 84 |
+
def _start_processing_thread(self):
|
| 85 |
+
"""Start the background processing thread"""
|
| 86 |
+
if self.processing_thread is None or not self.processing_thread.is_alive():
|
| 87 |
+
self.stop_event.clear()
|
| 88 |
+
self.processing_thread = threading.Thread(target=self._processing_worker, daemon=True)
|
| 89 |
+
self.processing_thread.start()
|
| 90 |
+
|
| 91 |
+
def _processing_worker(self):
|
| 92 |
+
"""Background thread that processes the latest frame"""
|
| 93 |
+
while not self.stop_event.is_set():
|
| 94 |
+
# Wait for a new frame to be available
|
| 95 |
+
if self.new_frame_signal.wait(timeout=1.0):
|
| 96 |
+
self.new_frame_signal.clear()
|
| 97 |
+
|
| 98 |
+
# Get the latest input frame
|
| 99 |
+
with self.input_lock:
|
| 100 |
+
if self.latest_input_frame is not None:
|
| 101 |
+
frame_to_process = self.latest_input_frame.copy()
|
| 102 |
+
frame_number = self.frame_counter
|
| 103 |
+
process_unique_hash = hashlib.md5(frame_to_process.tobytes()).hexdigest()
|
| 104 |
+
# print(f"Processing unique hash: {process_unique_hash}")
|
| 105 |
+
|
| 106 |
+
else:
|
| 107 |
+
continue
|
| 108 |
+
|
| 109 |
+
# Process the frame
|
| 110 |
+
processed_frame = self._process_frame(frame_to_process)
|
| 111 |
+
|
| 112 |
+
# Write frame number in the top left corner
|
| 113 |
+
processed_frame = cv2.putText(
|
| 114 |
+
processed_frame,
|
| 115 |
+
"{:d}".format(frame_number),
|
| 116 |
+
[50, 50],
|
| 117 |
+
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
|
| 118 |
+
fontScale=1,
|
| 119 |
+
color=(0, 0, 255),
|
| 120 |
+
thickness=2,
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
# Store the processed result
|
| 124 |
+
with self.output_lock:
|
| 125 |
+
self.latest_output_frame = processed_frame
|
| 126 |
+
|
| 127 |
+
def _process_frame(self, frame, bbox_thr=0.3, nms_thr=0.8, kpt_thr=0.3):
|
| 128 |
+
# predict bbox
|
| 129 |
+
processing_start = time.time()
|
| 130 |
+
|
| 131 |
+
# Mirror the frame
|
| 132 |
+
frame = frame[:, ::-1, :] # Flip horizontally for webcam mirroring
|
| 133 |
+
|
| 134 |
+
det_result = inference_detector(self.det_model, frame)
|
| 135 |
+
pred_instance = det_result.pred_instances.cpu().numpy( )
|
| 136 |
+
bboxes = np.concatenate(
|
| 137 |
+
(pred_instance.bboxes, pred_instance.scores[:, None]), axis=1)
|
| 138 |
+
bboxes = bboxes[np.logical_and(pred_instance.labels == 0,
|
| 139 |
+
pred_instance.scores > bbox_thr)]
|
| 140 |
+
# Sort bboxes by confidence score (column 4) in descending order
|
| 141 |
+
order = np.argsort(bboxes[:, 4])[::-1]
|
| 142 |
+
bboxes = bboxes[order[0], :4].reshape((1, -1))
|
| 143 |
+
|
| 144 |
+
self.visualizer.set_image(frame)
|
| 145 |
+
|
| 146 |
+
# predict keypoints
|
| 147 |
+
pose_start = time.time()
|
| 148 |
+
pose_results = inference_topdown(self.pose_model, frame, bboxes)
|
| 149 |
+
data_samples = merge_data_samples(pose_results)
|
| 150 |
+
|
| 151 |
+
# Visualize results
|
| 152 |
+
visualization_start = time.time()
|
| 153 |
+
self.visualizer.add_datasample(
|
| 154 |
+
'result',
|
| 155 |
+
frame,
|
| 156 |
+
data_sample=data_samples,
|
| 157 |
+
draw_gt=False,
|
| 158 |
+
draw_heatmap=False,
|
| 159 |
+
draw_bbox=True,
|
| 160 |
+
show_kpt_idx=False,
|
| 161 |
+
show=False,
|
| 162 |
+
kpt_thr=kpt_thr)
|
| 163 |
+
|
| 164 |
+
stop_time = time.time()
|
| 165 |
+
# print("Processing time: {:.3f}\tDetection time {:.3f}\tPose time: {:.3f}\tVisualization time: {:.3f}".format(
|
| 166 |
+
# stop_time - processing_start,
|
| 167 |
+
# pose_start - processing_start,
|
| 168 |
+
# visualization_start - pose_start,
|
| 169 |
+
# stop_time - visualization_start,
|
| 170 |
+
# ))
|
| 171 |
+
return self.visualizer.get_image()
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
def process(self, frame):
|
| 176 |
+
"""
|
| 177 |
+
Main processing function called by Gradio stream.
|
| 178 |
+
Stores incoming frame and returns latest processed result.
|
| 179 |
+
"""
|
| 180 |
+
current_time = time.time()
|
| 181 |
+
if self.first_call_time is None:
|
| 182 |
+
self.first_call_time = current_time
|
| 183 |
+
|
| 184 |
+
# Store the new frame in the input slot (replacing any existing frame)
|
| 185 |
+
with self.input_lock:
|
| 186 |
+
self.latest_input_frame = frame.copy()
|
| 187 |
+
self.frame_counter += 1
|
| 188 |
+
input_unique_hash = hashlib.md5(frame.tobytes()).hexdigest()
|
| 189 |
+
# print(f"Input unique hash: {input_unique_hash}")
|
| 190 |
+
|
| 191 |
+
# Signal that a new frame is available for processing
|
| 192 |
+
self.new_frame_signal.set()
|
| 193 |
+
|
| 194 |
+
# Return the latest processed output, or original frame if no processing done yet
|
| 195 |
+
with self.output_lock:
|
| 196 |
+
if self.latest_output_frame is not None:
|
| 197 |
+
output_unique_hash = hashlib.md5(self.latest_output_frame.tobytes()).hexdigest()
|
| 198 |
+
# print(f"Output unique hash: {output_unique_hash}")
|
| 199 |
+
return self.latest_output_frame
|
| 200 |
+
else:
|
| 201 |
+
# Add indicator that this is unprocessed
|
| 202 |
+
temp_frame = frame.copy()
|
| 203 |
+
cv2.putText(
|
| 204 |
+
temp_frame,
|
| 205 |
+
f"Waiting... {self.frame_counter}",
|
| 206 |
+
(50, 50),
|
| 207 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
| 208 |
+
1,
|
| 209 |
+
(255, 0, 0), # Red for unprocessed frames
|
| 210 |
+
2,
|
| 211 |
+
)
|
| 212 |
+
return temp_frame
|
| 213 |
+
|
| 214 |
+
def stop(self):
|
| 215 |
+
"""Stop the processing thread"""
|
| 216 |
+
self.stop_event.set()
|
| 217 |
+
if self.processing_thread and self.processing_thread.is_alive():
|
| 218 |
+
self.processing_thread.join(timeout=2.0)
|
| 219 |
+
|
| 220 |
+
def init_models(self):
|
| 221 |
+
# Init detector
|
| 222 |
+
if self.det_model is None:
|
| 223 |
+
print("Initializing MMDetection detector...")
|
| 224 |
+
self.det_model = init_detector(DET_CFG, DET_WEIGHTS, device=DEVICE)
|
| 225 |
+
self.det_model.cfg = adapt_mmdet_pipeline(self.det_model.cfg)
|
| 226 |
+
print("Detector initialized successfully!")
|
| 227 |
+
|
| 228 |
+
# Init pose estimator
|
| 229 |
+
if self.pose_model is None:
|
| 230 |
+
print("Initializing MMPose estimator...")
|
| 231 |
+
self.pose_model = init_pose_estimator(
|
| 232 |
+
POSE_CFG,
|
| 233 |
+
POSE_WEIGHTS,
|
| 234 |
+
device=DEVICE,
|
| 235 |
+
cfg_options=dict(model=dict(test_cfg=dict(output_heatmaps=True)))
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
# Build visualizer
|
| 239 |
+
self.pose_model.cfg.visualizer.radius = 4
|
| 240 |
+
self.pose_model.cfg.visualizer.alpha = 0.8
|
| 241 |
+
self.pose_model.cfg.visualizer.line_width = 2
|
| 242 |
+
self.visualizer = VISUALIZERS.build(self.pose_model.cfg.visualizer)
|
| 243 |
+
self.visualizer.set_dataset_meta(
|
| 244 |
+
self.pose_model.dataset_meta, skeleton_style='mmpose'
|
| 245 |
+
)
|
| 246 |
+
print("Pose estimator initialized successfully!")
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
# CSS for styling the Gradio interface
|
| 250 |
+
css = """.my-group {max-width: 600px !important; max-height: 600 !important;}
|
| 251 |
+
.my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""
|
| 252 |
+
|
| 253 |
+
# Initialize the asynchronous frame processor
|
| 254 |
+
frame_processor = AsyncFrameProcessor(processing_delay=0.5)
|
| 255 |
+
|
| 256 |
+
# Create Gradio interface
|
| 257 |
+
with gr.Blocks(css=css) as demo:
|
| 258 |
+
gr.HTML(
|
| 259 |
+
"""
|
| 260 |
+
<h1 style='text-align: center'>
|
| 261 |
+
Async Frame Processing Demo (Powered by WebRTC ⚡️)
|
| 262 |
+
</h1>
|
| 263 |
+
"""
|
| 264 |
+
)
|
| 265 |
+
gr.HTML(
|
| 266 |
+
"""
|
| 267 |
+
<h3 style='text-align: center'>
|
| 268 |
+
Real-time frame processing with single-slot queues
|
| 269 |
+
</h3>
|
| 270 |
+
"""
|
| 271 |
+
)
|
| 272 |
+
with gr.Column(elem_classes=["my-column"]):
|
| 273 |
+
with gr.Group(elem_classes=["my-group"]):
|
| 274 |
+
webcam_stream = WebRTC(
|
| 275 |
+
label="Webcam Stream",
|
| 276 |
+
rtc_configuration=rtc_configuration,
|
| 277 |
+
track_constraints=webcam_constraints,
|
| 278 |
+
mirror_webcam=True,
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
# Stream processing: connects webcam input to frame processor
|
| 282 |
+
webcam_stream.stream(
|
| 283 |
+
fn=frame_processor.process,
|
| 284 |
+
inputs=[webcam_stream],
|
| 285 |
+
outputs=[webcam_stream],
|
| 286 |
+
time_limit=None
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
if __name__ == "__main__":
|
| 290 |
+
demo.launch(
|
| 291 |
+
# server_name="0.0.0.0",
|
| 292 |
+
# server_port=17860,
|
| 293 |
+
share=True
|
| 294 |
+
)
|