File size: 15,451 Bytes
23a9ae4
 
 
85209ba
23a9ae4
 
 
 
 
 
 
 
 
 
 
 
b6f148b
 
 
23a9ae4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42c0b67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85209ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42c0b67
 
 
23a9ae4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85209ba
23a9ae4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85209ba
 
 
23a9ae4
 
 
 
 
 
85209ba
 
 
 
 
23a9ae4
85209ba
 
 
 
23a9ae4
85209ba
 
 
 
 
 
 
 
 
 
 
23a9ae4
 
85209ba
23a9ae4
85209ba
23a9ae4
 
85209ba
 
 
 
 
 
 
 
23a9ae4
85209ba
23a9ae4
 
85209ba
 
 
 
 
 
23a9ae4
85209ba
23a9ae4
 
 
85209ba
23a9ae4
85209ba
23a9ae4
 
 
 
85209ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23a9ae4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85209ba
23a9ae4
 
 
 
 
 
 
 
85209ba
23a9ae4
 
 
 
 
 
 
 
 
 
 
 
 
 
42c0b67
 
 
 
 
 
 
85209ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42c0b67
 
 
 
 
 
 
 
 
 
 
85209ba
 
 
 
 
 
23a9ae4
 
42c0b67
 
 
 
23a9ae4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42c0b67
 
 
 
23a9ae4
 
42c0b67
23a9ae4
85209ba
 
 
23a9ae4
 
85209ba
 
23a9ae4
 
 
 
 
 
 
e06319a
 
 
 
 
 
 
 
23a9ae4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85209ba
 
 
 
 
 
23a9ae4
 
b6f148b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23a9ae4
b6f148b
 
 
 
 
 
 
23a9ae4
b6f148b
23a9ae4
b6f148b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
import io
import os
from pathlib import Path
from typing import Dict, List, Optional, Tuple

FEATURE_NAMES = [
    "temperature_f",
    "humidity_percent",
    "wind_mph",
    "hour_of_day",
    "is_weekend",
]


CACHE_ROOT = Path(__file__).with_name(".cache")
CACHE_ROOT.mkdir(exist_ok=True)
matplotlib_cache = CACHE_ROOT / "matplotlib"
matplotlib_cache.mkdir(parents=True, exist_ok=True)
os.environ.setdefault("MPLCONFIGDIR", str(matplotlib_cache))
os.environ.setdefault("XDG_CACHE_HOME", str(CACHE_ROOT))

import gradio as gr
import matplotlib

matplotlib.use("Agg")
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from PIL import Image
from sklearn.metrics import accuracy_score, classification_report
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, plot_tree


CUSTOM_CSS = """
#predict-button {
    background: linear-gradient(135deg, #ce1126, #8b0000);
    color: white;
    font-weight: 700;
    font-size: 1.05rem;
    border: none;
    box-shadow: 0 6px 18px rgba(139, 0, 0, 0.35);
}
#predict-button:hover {
    transform: translateY(-1px);
    box-shadow: 0 10px 24px rgba(139, 0, 0, 0.45);
}
.prediction-card {
    border: 3px solid #ce1126;
    border-radius: 18px;
    padding: 1.5rem;
    background: #fff4f4;
    text-align: center;
    box-shadow: 0 12px 30px rgba(206, 17, 38, 0.15);
}
.prediction-card .location {
    font-size: 2rem;
    font-weight: 800;
    color: #7b0011;
    letter-spacing: 0.5px;
}
.prediction-card .location span {
    text-transform: uppercase;
}
.prediction-card .confidence {
    margin-top: 0.75rem;
    font-size: 1.05rem;
    color: #333;
}
.prediction-card .secondary {
    margin-top: 0.25rem;
    font-size: 0.95rem;
    color: #555;
}
.path-list {
    list-style: none;
    padding: 0;
    margin: 0;
    display: flex;
    flex-direction: column;
    gap: 0.75rem;
}
.path-list li {
    background: #f8f9fa;
    border-left: 5px solid #ce1126;
    padding: 0.75rem 1rem;
    border-radius: 10px;
    box-shadow: inset 0 0 0 1px rgba(0, 0, 0, 0.05);
}
.path-list li .headline {
    font-weight: 700;
    color: #7b0011;
    margin-bottom: 0.2rem;
}
.path-list li .meta {
    color: #333;
    font-size: 0.95rem;
}
.path-list li.leaf {
    border-left-color: #1b5e20;
    background: #e8f5e9;
}
.path-list li.leaf .headline {
    color: #1b5e20;
}
"""


def build_dataset(n_samples: int = 200, seed: int = 42) -> pd.DataFrame:
    rng = np.random.default_rng(seed)
    data = pd.DataFrame(
        {
            "temperature_f": rng.integers(60, 115, n_samples),
            "humidity_percent": rng.integers(10, 40, n_samples),
            "wind_mph": rng.integers(0, 25, n_samples),
            "hour_of_day": rng.integers(8, 22, n_samples),
            "is_weekend": rng.integers(0, 2, n_samples),
        }
    )

    labels: list[str] = []
    for idx in range(n_samples):
        temp = data.at[idx, "temperature_f"]
        wind = data.at[idx, "wind_mph"]
        hour = data.at[idx, "hour_of_day"]
        if temp < 85 and wind < 15 and 8 <= hour <= 18:
            labels.append("Outdoors")
        elif temp > 105:
            labels.append("Library")
        elif wind > 20:
            labels.append("Library")
        elif hour > 19:
            labels.append("Library")
        else:
            labels.append(rng.choice(["Library", "Outdoors"], p=[0.6, 0.4]))

    data["study_location"] = labels
    return data


def train_model(data: pd.DataFrame) -> Tuple[DecisionTreeClassifier, Dict[str, float]]:
    X = data[FEATURE_NAMES]
    y = data["study_location"]
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.2, random_state=42
    )
    clf = DecisionTreeClassifier(
        max_depth=3,
        min_samples_split=10,
        random_state=42,
    )
    clf.fit(X_train, y_train)

    y_pred_train = clf.predict(X_train)
    y_pred_test = clf.predict(X_test)
    metrics = {
        "train_accuracy": accuracy_score(y_train, y_pred_train),
        "test_accuracy": accuracy_score(y_test, y_pred_test),
    }
    return clf, metrics


def describe_path(
    model: DecisionTreeClassifier, sample: np.ndarray
) -> Tuple[List[Dict[str, object]], List[int]]:
    tree = model.tree_
    node_indicator = model.decision_path(sample.reshape(1, -1))
    leaf_id = model.apply(sample.reshape(1, -1))[0]
    start, end = node_indicator.indptr[:2]
    node_index = node_indicator.indices[start:end]

    steps: List[Dict[str, object]] = []
    path_nodes = list(node_index) + [leaf_id]
    for node_position, node_id in enumerate(node_index, start=1):
        feature_index = int(tree.feature[node_id])
        threshold = float(tree.threshold[node_id])
        feature_name = FEATURE_NAMES[feature_index]
        feature_value = float(sample[feature_index])
        go_left = feature_value <= threshold
        direction = "≤" if go_left else ">"
        next_node = int(tree.children_left[node_id] if go_left else tree.children_right[node_id])
        steps.append(
            {
                "step": node_position,
                "node_id": int(node_id),
                "next_node": next_node,
                "feature": feature_name,
                "feature_label": feature_name.replace("_", " ").title(),
                "threshold": threshold,
                "value": feature_value,
                "direction": direction,
                "decision": "left" if go_left else "right",
            }
        )

    leaf_samples = int(tree.n_node_samples[leaf_id])
    confidences = model.predict_proba(sample.reshape(1, -1))[0]
    class_idx = int(confidences.argmax())
    class_name = model.classes_[class_idx]
    steps.append(
        {
            "step": len(node_index) + 1,
            "node_id": int(leaf_id),
            "leaf": True,
            "prediction": class_name,
            "confidence": float(confidences[class_idx]),
            "samples": leaf_samples,
        }
    )
    return steps, path_nodes


def render_tree_image(
    model: DecisionTreeClassifier,
    highlighted_nodes: Optional[List[int]] = None,
    leaf_id: Optional[int] = None,
) -> Image.Image:
    highlighted = set(highlighted_nodes or [])
    fig, ax = plt.subplots(figsize=(10, 6))
    texts = plot_tree(
        model,
        feature_names=[name.replace("_", " ").title() for name in FEATURE_NAMES],
        class_names=model.classes_,
        filled=False,
        rounded=True,
        node_ids=True,
        fontsize=9,
        ax=ax,
    )
    fig.tight_layout()
    for text in texts:
        label = text.get_text()
        node_id = None
        for line in label.split("\n"):
            if line.startswith("node id ="):
                try:
                    node_id = int(line.split("=")[1].strip())
                except ValueError:
                    node_id = None
                break
        if node_id is None:
            continue
        if node_id in highlighted:
            is_leaf = leaf_id is not None and node_id == leaf_id
            text.set_bbox(
                dict(
                    boxstyle="round,pad=0.45",
                    facecolor="#e8f5e9" if is_leaf else "#ffe5e9",
                    edgecolor="#2e7d32" if is_leaf else "#ce1126",
                    linewidth=2.5,
                )
            )
            text.set_color("#1b5e20" if is_leaf else "#7b0011")
        else:
            text.set_bbox(
                dict(
                    boxstyle="round,pad=0.45",
                    facecolor="#f5f7fa",
                    edgecolor="#c3cfe2",
                    linewidth=1.2,
                )
            )
            text.set_color("#2e2e2e")

    buffer = io.BytesIO()
    fig.savefig(buffer, format="png", dpi=200, bbox_inches="tight")
    plt.close(fig)
    buffer.seek(0)
    return Image.open(buffer)


def load_html_snippet() -> str:
    html_path = Path(__file__).with_name("interactive_decision_tree.html")
    if html_path.exists():
        return html_path.read_text(encoding="utf-8")
    return ""


DATAFRAME = build_dataset()
MODEL, METRICS = train_model(DATAFRAME)
HTML_SNIPPET = load_html_snippet()
CLASS_REPORT = classification_report(
    DATAFRAME["study_location"],
    MODEL.predict(DATAFRAME[FEATURE_NAMES]),
    target_names=MODEL.classes_,
    zero_division=0,
)
DEFAULT_TREE_IMAGE = render_tree_image(MODEL)


def predict_study_location(
    temperature: int,
    humidity: int,
    wind: int,
    hour: int,
    weekend: bool,
) -> Tuple[str, str, str, Image.Image]:
    sample = np.array(
        [
            temperature,
            humidity,
            wind,
            hour,
            1 if weekend else 0,
        ],
        dtype=float,
    )
    probabilities = MODEL.predict_proba(sample.reshape(1, -1))[0]
    top_index = probabilities.argmax()
    label = MODEL.classes_[top_index]
    confidence = probabilities[top_index]
    secondary_index = (
        probabilities.argsort()[::-1][1]
        if len(probabilities) > 1
        else top_index
    )
    secondary_confidence = probabilities[secondary_index]
    secondary_label = MODEL.classes_[secondary_index]
    step_details, path_nodes = describe_path(MODEL, sample)
    leaf_id = path_nodes[-1] if path_nodes else None
    path_html_items: list[str] = []
    for detail in step_details:
        if detail.get("leaf"):
            path_html_items.append(
                f"""
                <li class="leaf">
                    <div class="headline">Leaf: predict {detail['prediction']}</div>
                    <div class="meta">Confidence {detail['confidence']:.0%} · Support {detail['samples']} samples</div>
                </li>
                """.strip()
            )
        else:
            threshold = detail["threshold"]
            value = detail["value"]
            direction = detail["direction"]
            feature_label = detail["feature_label"]
            decision = detail["decision"]
            next_node = detail["next_node"]
            path_html_items.append(
                f"""
                <li>
                    <div class="headline">
                        Step {detail['step']}: {feature_label} {direction} {threshold:.1f}
                    </div>
                    <div class="meta">
                        Observed value {value:.1f} → take {decision} branch (node {next_node})
                    </div>
                </li>
                """.strip()
            )

    path_html = "<ol class='path-list'>" + "\n".join(path_html_items) + "</ol>"
    prediction_html = f"""
    <div class="prediction-card">
        <div class="location">Study at the <span>{label}</span></div>
        <div class="confidence">Confidence: {confidence:.1%}</div>
        <div class="secondary">Next best: {secondary_label} ({secondary_confidence:.1%})</div>
    </div>
    """.strip()
    confidence_text = (
        f"Primary recommendation: **{label}** (`{confidence:.1%}`) · "
        f"Alternate: **{secondary_label}** (`{secondary_confidence:.1%}`)"
    )
    highlighted_image = render_tree_image(
        MODEL,
        highlighted_nodes=path_nodes,
        leaf_id=leaf_id,
    )
    return prediction_html, confidence_text, path_html, highlighted_image


with gr.Blocks(
    title="UNLV Study Location Predictor",
    css=CUSTOM_CSS,
) as demo:
    gr.Markdown(
        """
        # UNLV Study Location Predictor
        Adjust the sliders to mirror the current Las Vegas weather and the decision tree
        will suggest the best study location. All numbers come from a synthetic dataset
        tailored for classroom walkthroughs.
        """
    )

    with gr.Row():
        with gr.Column():
            temperature = gr.Slider(
                minimum=60,
                maximum=115,
                value=85,
                step=1,
                label="Temperature (°F)",
                info="Normal daytime range in Las Vegas",
            )
            humidity = gr.Slider(
                minimum=10,
                maximum=40,
                value=20,
                step=1,
                label="Humidity (%)",
            )
            wind = gr.Slider(
                minimum=0,
                maximum=25,
                value=10,
                step=1,
                label="Wind Speed (mph)",
            )
            hour = gr.Slider(
                minimum=8,
                maximum=22,
                value=14,
                step=1,
                label="Hour of Day (24h)",
            )
            weekend = gr.Checkbox(
                label="Is it the weekend?",
                value=False,
            )
            run_button = gr.Button(
                "Predict Study Location",
                elem_id="predict-button",
            )

        with gr.Column():
            prediction_box = gr.HTML()
            confidence_box = gr.Markdown()
            path_box = gr.HTML(
                "<p style='color:#666;font-style:italic;'>Run a prediction to walk through each decision rule.</p>"
            )

    with gr.Accordion("Explore the Decision Tree", open=False):
        tree_image = gr.Image(
            value=DEFAULT_TREE_IMAGE,
            image_mode="RGB",
            show_label=False,
        )
        gr.Markdown(
            f"Train accuracy: `{METRICS['train_accuracy']:.1%}` | "
            f"Test accuracy: `{METRICS['test_accuracy']:.1%}`"
        )
        gr.Markdown(
            """
            **Legend:**  
            • *gini* – how mixed the classes are (0 = pure, higher = more mixed)  
            • *samples* – number of training rows that reached the node  
            • *class* – majority label assigned when the tree predicts at that node
            """,
        )

    with gr.Accordion("Inspect the Synthetic Dataset", open=False):
        gr.DataFrame(
            value=DATAFRAME.head(20),
            wrap=True,
            label="Sample of the training data (20 rows)",
            interactive=False,
        )
        gr.Markdown(
            "Class balance and precision/recall on the full dataset:"
            f"\n```\n{CLASS_REPORT}\n```"
        )

    if HTML_SNIPPET:
        with gr.Accordion("HTML Prototype (original demo)", open=False):
            gr.HTML(HTML_SNIPPET)

    run_button.click(
        predict_study_location,
        inputs=[temperature, humidity, wind, hour, weekend],
        outputs=[prediction_box, confidence_box, path_box, tree_image],
    )


if __name__ == "__main__":
    queued_app = demo.queue()
    is_hf_space = bool(os.environ.get("SPACE_ID"))
    default_port = int(
        os.environ.get(
            "PORT",
            os.environ.get("GRADIO_SERVER_PORT", "7860"),
        )
    )
    launch_kwargs = {
        "server_name": os.environ.get("GRADIO_SERVER_NAME", "0.0.0.0"),
        "server_port": default_port,
        "show_error": True,
        "share": os.environ.get("GRADIO_SHARE", "").lower() == "true",
    }
    if not is_hf_space:
        launch_kwargs["prevent_thread_lock"] = True

    try:
        queued_app.launch(**launch_kwargs)
    except OSError:
        fallback_port = int(
            os.environ.get(
                "GRADIO_FALLBACK_PORT",
                str(default_port + 1111),
            )
        )
        if fallback_port == launch_kwargs["server_port"]:
            raise
        launch_kwargs["server_port"] = fallback_port
        queued_app.launch(**launch_kwargs)