File size: 9,852 Bytes
23a9ae4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
"""
Decision Tree Tutorial for UNLV Undergrads
===========================================
A practical example using a Las Vegas student scenario

This tutorial demonstrates how decision trees work by predicting
whether a UNLV student should study at the library or outdoors.
"""

import pandas as pd
import numpy as np
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns

# Set style for better-looking plots
sns.set_style("whitegrid")
plt.rcParams['figure.figsize'] = (12, 8)

print("=" * 60)
print("DECISION TREE TUTORIAL FOR UNLV STUDENTS")
print("=" * 60)
print("\nScenario: Should you study at the library or outdoors?")
print("Factors: Temperature, Humidity, Wind, Time of Day\n")

# ============================================================
# STEP 1: CREATE A REALISTIC LAS VEGAS DATASET
# ============================================================
print("\n" + "="*60)
print("STEP 1: Creating the Dataset")
print("="*60)

# Create sample data based on Las Vegas conditions
np.random.seed(42)  # For reproducibility

n_samples = 200

data = {
    'temperature_f': np.random.randint(60, 115, n_samples),  # Las Vegas temps!
    'humidity_percent': np.random.randint(10, 40, n_samples),  # Vegas is dry
    'wind_mph': np.random.randint(0, 25, n_samples),
    'hour_of_day': np.random.randint(8, 22, n_samples),  # 8 AM to 10 PM
    'is_weekend': np.random.choice([0, 1], n_samples),
}

# Create labels based on logical rules (this is our "ground truth")
labels = []
for i in range(n_samples):
    temp = data['temperature_f'][i]
    wind = data['wind_mph'][i]
    hour = data['hour_of_day'][i]
    
    # Decision logic: Go outdoors if conditions are nice
    if temp < 85 and wind < 15 and 8 <= hour <= 18:
        labels.append('Outdoors')  # Nice conditions
    elif temp > 105:
        labels.append('Library')  # Too hot!
    elif wind > 20:
        labels.append('Library')  # Too windy!
    elif hour > 19:
        labels.append('Library')  # Evening - better indoor lighting
    else:
        # Add some randomness for realistic data
        labels.append(np.random.choice(['Library', 'Outdoors'], p=[0.6, 0.4]))

data['study_location'] = labels

# Convert to DataFrame
df = pd.DataFrame(data)

print(f"\nDataset created with {len(df)} student decisions")
print(f"\nFirst few rows:")
print(df.head(10))

print(f"\n๐Ÿ“Š Class Distribution:")
print(df['study_location'].value_counts())

# ============================================================
# STEP 2: PREPARE DATA FOR MACHINE LEARNING
# ============================================================
print("\n" + "="*60)
print("STEP 2: Preparing Data")
print("="*60)

# Separate features (X) and target (y)
X = df[['temperature_f', 'humidity_percent', 'wind_mph', 'hour_of_day', 'is_weekend']]
y = df['study_location']

print("\nFeatures (what the model uses to decide):")
print(X.columns.tolist())
print("\nTarget (what we're predicting):", y.name)

# Split into training and testing sets (80% train, 20% test)
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42
)

print(f"\nโœ“ Training set: {len(X_train)} samples")
print(f"โœ“ Testing set: {len(X_test)} samples")

# ============================================================
# STEP 3: BUILD THE DECISION TREE
# ============================================================
print("\n" + "="*60)
print("STEP 3: Building the Decision Tree")
print("="*60)

# Create the decision tree classifier
# max_depth=3 keeps it simple and easy to visualize
tree_model = DecisionTreeClassifier(
    max_depth=3,           # Limit tree depth for interpretability
    min_samples_split=10,  # Need at least 10 samples to split a node
    random_state=42
)

# Train the model
print("\n๐ŸŒณ Training the decision tree...")
tree_model.fit(X_train, y_train)
print("โœ“ Training complete!")

# ============================================================
# STEP 4: EVALUATE THE MODEL
# ============================================================
print("\n" + "="*60)
print("STEP 4: Evaluating Model Performance")
print("="*60)

# Make predictions
y_pred_train = tree_model.predict(X_train)
y_pred_test = tree_model.predict(X_test)

# Calculate accuracy
train_accuracy = accuracy_score(y_train, y_pred_train)
test_accuracy = accuracy_score(y_test, y_pred_test)

print(f"\n๐Ÿ“ˆ Training Accuracy: {train_accuracy:.2%}")
print(f"๐Ÿ“ˆ Testing Accuracy: {test_accuracy:.2%}")

print("\n๐Ÿ“‹ Detailed Classification Report:")
print(classification_report(y_test, y_pred_test))

# ============================================================
# STEP 5: VISUALIZE THE DECISION TREE
# ============================================================
print("\n" + "="*60)
print("STEP 5: Visualizing the Decision Tree")
print("="*60)

plt.figure(figsize=(20, 10))
plot_tree(
    tree_model,
    feature_names=X.columns,
    class_names=['Library', 'Outdoors'],
    filled=True,
    rounded=True,
    fontsize=10
)
plt.title("Decision Tree: Study Location Predictor\n(UNLV Student Example)", 
          fontsize=16, fontweight='bold')
plt.tight_layout()
plt.savefig('/mnt/user-data/outputs/decision_tree_visualization.png', dpi=300, bbox_inches='tight')
print("\nโœ“ Decision tree visualization saved!")

# ============================================================
# STEP 6: FEATURE IMPORTANCE
# ============================================================
print("\n" + "="*60)
print("STEP 6: Understanding Feature Importance")
print("="*60)

# Get feature importance
feature_importance = pd.DataFrame({
    'feature': X.columns,
    'importance': tree_model.feature_importances_
}).sort_values('importance', ascending=False)

print("\n๐ŸŽฏ Feature Importance (which factors matter most?):")
print(feature_importance)

# Visualize feature importance
plt.figure(figsize=(10, 6))
plt.barh(feature_importance['feature'], feature_importance['importance'])
plt.xlabel('Importance Score', fontsize=12)
plt.title('Feature Importance in Decision Making', fontsize=14, fontweight='bold')
plt.tight_layout()
plt.savefig('/mnt/user-data/outputs/feature_importance.png', dpi=300, bbox_inches='tight')
print("\nโœ“ Feature importance plot saved!")

# ============================================================
# STEP 7: CONFUSION MATRIX
# ============================================================
print("\n" + "="*60)
print("STEP 7: Confusion Matrix")
print("="*60)

cm = confusion_matrix(y_test, y_pred_test)
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', 
            xticklabels=['Library', 'Outdoors'],
            yticklabels=['Library', 'Outdoors'])
plt.title('Confusion Matrix: Actual vs Predicted', fontsize=14, fontweight='bold')
plt.ylabel('Actual', fontsize=12)
plt.xlabel('Predicted', fontsize=12)
plt.tight_layout()
plt.savefig('/mnt/user-data/outputs/confusion_matrix.png', dpi=300, bbox_inches='tight')
print("\nโœ“ Confusion matrix saved!")

# ============================================================
# STEP 8: TEST WITH NEW EXAMPLES
# ============================================================
print("\n" + "="*60)
print("STEP 8: Making Predictions with New Data")
print("="*60)

# Create some test scenarios
test_scenarios = pd.DataFrame([
    {'temperature_f': 75, 'humidity_percent': 15, 'wind_mph': 5, 'hour_of_day': 10, 'is_weekend': 1},
    {'temperature_f': 108, 'humidity_percent': 20, 'wind_mph': 10, 'hour_of_day': 14, 'is_weekend': 0},
    {'temperature_f': 65, 'humidity_percent': 25, 'wind_mph': 20, 'hour_of_day': 16, 'is_weekend': 1},
    {'temperature_f': 90, 'humidity_percent': 18, 'wind_mph': 8, 'hour_of_day': 20, 'is_weekend': 0},
])

predictions = tree_model.predict(test_scenarios)

print("\n๐Ÿ”ฎ Predictions for new scenarios:\n")
for i, (idx, row) in enumerate(test_scenarios.iterrows()):
    print(f"Scenario {i+1}:")
    print(f"  Temperature: {row['temperature_f']}ยฐF")
    print(f"  Humidity: {row['humidity_percent']}%")
    print(f"  Wind: {row['wind_mph']} mph")
    print(f"  Time: {row['hour_of_day']}:00")
    print(f"  Weekend: {'Yes' if row['is_weekend'] else 'No'}")
    print(f"  โ†’ Recommended location: {predictions[i]}")
    print()

# ============================================================
# SUMMARY FOR STUDENTS
# ============================================================
print("\n" + "="*60)
print("KEY TAKEAWAYS FOR UNLV STUDENTS")
print("="*60)
print("""
1. **What is a Decision Tree?**
   - A flowchart-like model that makes decisions by asking questions
   - Easy to interpret and visualize
   - Works like playing "20 Questions"

2. **How Does It Work?**
   - Starts at the root (top) with all data
   - Splits data based on features (temperature, wind, etc.)
   - Continues splitting until reaching a decision (leaf node)

3. **Key Concepts:**
   - Training: Teaching the model using past examples
   - Testing: Checking how well it works on new data
   - Overfitting: When the tree memorizes training data (bad!)
   - Feature Importance: Which factors matter most

4. **Real-World Applications:**
   - Medical diagnosis
   - Credit approval
   - Customer segmentation
   - Game AI
   - Weather prediction

5. **Advantages:**
   โœ“ Easy to understand and explain
   โœ“ Works with both numbers and categories
   โœ“ Requires little data preparation

6. **Limitations:**
   โœ— Can overfit if too complex
   โœ— Sensitive to small data changes
   โœ— May not capture complex relationships
""")

print("\n" + "="*60)
print("๐ŸŽ“ Tutorial Complete!")
print("="*60)
print("\nFiles saved:")
print("  โ€ข decision_tree_visualization.png")
print("  โ€ข feature_importance.png")
print("  โ€ข confusion_matrix.png")