File size: 12,018 Bytes
696ecfb a78e699 696ecfb a78e699 696ecfb a78e699 180ad9e a37304e 180ad9e ab19864 0888364 ddf32d4 696ecfb 1bc4ac3 696ecfb a78e699 696ecfb 62a1cfd 7d3f4c9 3d9b565 7d3f4c9 3d9b565 7d3f4c9 3d9b565 7d3f4c9 3d9b565 7d3f4c9 3d9b565 7d3f4c9 3d9b565 7d3f4c9 388bc44 e236407 388bc44 e236407 388bc44 dc87bd2 e236407 dc87bd2 e236407 388bc44 180ad9e a37304e 180ad9e a37304e 180ad9e 1bc4ac3 180ad9e a37304e 180ad9e a37304e d2436f4 a37304e 180ad9e a37304e d2436f4 a37304e 180ad9e a37304e 180ad9e a37304e 180ad9e a37304e 180ad9e a37304e 251a198 1bc4ac3 696ecfb 1bc4ac3 a78e699 251a198 e236407 1bc4ac3 696ecfb 1bc4ac3 251a198 1bc4ac3 388bc44 dc87bd2 388bc44 1bc4ac3 c5b8c89 7d3f4c9 d2436f4 dc87bd2 1bc4ac3 dc87bd2 c5b8c89 1bc4ac3 d2436f4 1bc4ac3 658ff7a 251a198 1bc4ac3 696ecfb dc87bd2 696ecfb 7d3f4c9 1bc4ac3 696ecfb 1bc4ac3 a78e699 1bc4ac3 a37304e 1bc4ac3 a37304e 1bc4ac3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import streamlit as st
import torch
import torchaudio
from pyannote.audio import Pipeline
from pyannote.audio.pipelines.utils.hook import ProgressHook
import tempfile
import os
import matplotlib.pyplot as plt
from pyannote.core import notebook
from huggingface_hub import HfApi, snapshot_download, hf_hub_download
from huggingface_hub.errors import LocalEntryNotFoundError, HfHubHTTPError
import requests
import pyannote.audio
import sys
import traceback
from speechbrain.pretrained import EncoderClassifier
from pydub import AudioSegment
import numpy as np
# Set page configuration
st.set_page_config(page_title="Optimized Speaker Diarization App", layout="wide")
st.title("Optimized Speaker Diarization App")
# Fetch HF_TOKEN from environment variable
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
st.error("HF_TOKEN not found in environment variables. Please set it in your Hugging Face Space secrets.")
st.stop()
class ProgressHook:
def __init__(self, status, progress_bar):
self.status = status
self.progress_bar = progress_bar
self.total = 0
self.completed = 0
self.current_stage = ""
def __call__(self, *args, **kwargs):
if len(args) == 2 and isinstance(args[0], str):
# Handle the case where it's called with (stage, data)
self.current_stage = args[0]
self.status.update(label=f"Processing: {self.current_stage}", state="running")
elif 'completed' in kwargs and 'total' in kwargs:
self.completed = kwargs['completed']
self.total = kwargs['total']
self._update_progress()
elif len(args) == 2 and all(isinstance(arg, (int, float)) for arg in args):
self.completed, self.total = args
self._update_progress()
def _update_progress(self):
if self.total > 0:
progress_percentage = min(self.completed / self.total, 1.0)
self.status.update(label=f"Processing: {self.current_stage} - {progress_percentage:.1%} complete", state="running")
self.progress_bar.progress(progress_percentage)
def preprocess_audio(tmp_path):
# Load the audio file using pydub
audio = AudioSegment.from_file(tmp_path)
# Convert to mono if stereo
if audio.channels == 2:
audio = audio.set_channels(1)
# Resample to 16kHz if necessary
if audio.frame_rate != 16000:
audio = audio.set_frame_rate(16000)
st.info("Resampled audio to 16 kHz")
# Convert to numpy array
samples = np.array(audio.get_array_of_samples())
# Convert to torch tensor
waveform = torch.FloatTensor(samples).unsqueeze(0) / 32768.0 # Normalize to [-1, 1]
# Determine the segment size (10 seconds at 16 kHz)
segment_size = 160000
# Calculate the number of segments
num_segments = (waveform.shape[1] + segment_size - 1) // segment_size
# Calculate the expected total length
expected_length = num_segments * segment_size
# Calculate the padding length
padding_length = expected_length - waveform.shape[1]
if padding_length > 0:
# Pad the waveform with zeros
pad = torch.zeros((waveform.shape[0], padding_length))
waveform = torch.cat((waveform, pad), dim=1)
st.info(f"Padded waveform with {padding_length} zeros")
else:
st.info("No padding needed")
# Save the processed waveform to a temporary WAV file
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as processed_file:
processed_path = processed_file.name
torchaudio.save(processed_path, waveform, 16000)
st.info("Saved processed waveform to temporary WAV file")
return waveform, 16000, processed_path
def check_versions():
st.info("Checking package versions...")
pyannote_version = pyannote.audio.__version__
torch_version = torch.__version__
st.write(f"Pyannote Audio version: {pyannote_version}")
st.write(f"PyTorch version: {torch_version}")
if pyannote_version < "3.1.0":
st.warning("Your pyannote.audio version might be outdated. Consider upgrading to 3.1.0 or later.")
if torch_version < "2.0.0":
st.warning("Your PyTorch version might be outdated. Consider upgrading to 2.0.0 or later.")
check_versions()
def verify_token(token):
api = HfApi()
try:
user_info = api.whoami(token=token)
st.success(f"Token verified. Logged in as: {user_info['name']}")
return True
except Exception as e:
st.error(f"Token verification failed: {str(e)}")
return False
def check_hf_api():
st.info("Checking Hugging Face API...")
api_url = "https://huggingface.co/api/models/pyannote/speaker-diarization-3.1"
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
try:
response = requests.get(api_url, headers=headers)
response.raise_for_status()
st.success("Successfully connected to Hugging Face API")
with st.expander("API Response"):
st.json(response.json())
except requests.exceptions.RequestException as e:
st.error(f"Error connecting to Hugging Face API: {str(e)}")
if response.status_code == 403:
st.error("Access denied. Please check your token permissions.")
st.info("Ensure your token has permission to access gated repositories.")
st.code(response.text)
def verify_model_files():
st.info("Verifying model files...")
required_files = [
"config.yaml",
"pytorch_model.bin",
"pyannote_serialized_object.bin"
]
for file in required_files:
try:
path = hf_hub_download("pyannote/speaker-diarization-3.1", filename=file, use_auth_token=HF_TOKEN)
if os.path.exists(path):
st.success(f"File {file} found at {path}")
else:
st.error(f"File {file} not found")
except Exception as e:
st.error(f"Error downloading {file}: {str(e)}")
@st.cache_resource
def load_pipeline():
try:
st.info("Attempting to load the pipeline...")
pipeline = Pipeline.from_pretrained(
"pyannote/speaker-diarization-3.1",
use_auth_token=HF_TOKEN
)
st.success("Pipeline created successfully")
if torch.cuda.is_available():
st.info("Moving pipeline to GPU...")
pipeline.to(torch.device("cuda"))
st.success("Pipeline moved to GPU")
return pipeline
except Exception as e:
st.error(f"Error loading pipeline: {str(e)}")
st.error("Error details:")
st.code(traceback.format_exc())
raise e
@st.cache_resource
def load_speechbrain_model():
st.info("Loading SpeechBrain model...")
classifier = EncoderClassifier.from_hparams(source="speechbrain/spkrec-ecapa-voxceleb")
st.success("SpeechBrain model loaded successfully")
return classifier
# Sidebar
with st.sidebar:
st.header("Settings")
show_advanced = st.toggle("Show Advanced Options")
if show_advanced:
num_speakers = st.number_input("Number of speakers (0 for auto)", min_value=0, value=0)
min_speakers = st.number_input("Minimum number of speakers", min_value=1, value=1)
max_speakers = st.number_input("Maximum number of speakers", min_value=1, value=5)
# Main content
tab1, tab2, tab3 = st.tabs(["Upload & Process", "Results", "Visualization"])
with tab1:
uploaded_file = st.file_uploader("Choose an audio file", type=['wav', 'mp3', 'flac'])
if uploaded_file is not None:
# Save uploaded file temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as tmp_file:
tmp_file.write(uploaded_file.getvalue())
tmp_path = tmp_file.name
try:
if verify_token(HF_TOKEN):
check_hf_api()
verify_model_files()
pipeline = load_pipeline()
speechbrain_model = load_speechbrain_model()
else:
st.stop()
# Preprocess the audio file
waveform, sample_rate, processed_path = preprocess_audio(tmp_path)
with st.status("Processing audio...", expanded=True) as status:
progress_bar = st.progress(0)
progress_hook = ProgressHook(status, progress_bar)
# Run the pipeline on the processed audio file
diarization_args = {
"file": processed_path,
"hook": progress_hook
}
if show_advanced:
if num_speakers > 0:
diarization_args["num_speakers"] = num_speakers
else:
diarization_args["min_speakers"] = min_speakers
diarization_args["max_speakers"] = max_speakers
diarization = pipeline(**diarization_args)
status.update(label="Diarization complete!", state="complete")
# Generate RTTM content
rttm_content = ""
for turn, _, speaker in diarization.itertracks(yield_label=True):
rttm_line = f"SPEAKER {os.path.basename(tmp_path)} 1 {turn.start:.3f} {turn.duration:.3f} <NA> <NA> {speaker} <NA> <NA>\n"
rttm_content += rttm_line
# Use SpeechBrain for speaker embedding (optional)
embeddings = speechbrain_model.encode_batch(waveform)
st.success("Speaker embeddings generated successfully")
except Exception as e:
st.error(f"An error occurred: {str(e)}")
st.error("Error details:")
st.code(traceback.format_exc())
finally:
# Clean up the temporary files
os.unlink(tmp_path)
if 'processed_path' in locals():
os.unlink(processed_path)
with tab2:
if 'diarization' in locals():
st.subheader("Diarization Results")
st.metric("Number of speakers detected", len(diarization.labels()))
with st.expander("RTTM Output"):
st.text_area("RTTM Content", rttm_content, height=300)
st.download_button(
label="Download RTTM file",
data=rttm_content,
file_name="diarization.rttm",
mime="text/plain"
)
with tab3:
if 'diarization' in locals():
if st.button("Visualize Diarization"):
fig, ax = plt.subplots(figsize=(10, 2))
notebook.plot_diarization(diarization, ax=ax)
plt.tight_layout()
st.pyplot(fig)
# Debug Information
with st.expander("Debug Information"):
st.write(f"Working directory: {os.getcwd()}")
st.write(f"Files in working directory: {os.listdir()}")
st.write(f"Python version: {sys.version.split()[0]}")
st.write(f"PyTorch version: {torch.__version__}")
st.write(f"Pyannote Audio version: {pyannote.audio.__version__}")
st.write(f"CUDA available: {torch.cuda.is_available()}")
st.write(f"Device: {'CUDA' if torch.cuda.is_available() else 'CPU'}")
# Token Permissions Instructions
with st.expander("Token Permissions"):
st.markdown("""
If you're encountering access issues, please ensure your Hugging Face token has the following permissions:
1. Go to [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens)
2. Find your token or create a new one
3. Ensure "Read" access is granted
4. Check the box for "Access to gated repositories"
5. Save the changes and try again
""")
# Clear Cache Button
if st.button("Clear Cache"):
import shutil
cache_dir = "./model_cache"
if os.path.exists(cache_dir):
shutil.rmtree(cache_dir)
st.success("Cache cleared successfully.")
else:
st.info("No cache directory found.") |