Spaces:
Sleeping
Sleeping
| from transformers import CLIPModel, CLIPProcessor | |
| import time | |
| import gradio as gr | |
| def get_zero_shot_classification_tab(): | |
| openai_model_name = "openai/clip-vit-large-patch14" | |
| openai_model = CLIPModel.from_pretrained(openai_model_name) | |
| openai_processor = CLIPProcessor.from_pretrained(openai_model_name) | |
| patrickjohncyh_model_name = "patrickjohncyh/fashion-clip" | |
| patrickjohncyh_model = CLIPModel.from_pretrained(patrickjohncyh_model_name) | |
| patrickjohncyh_processor = CLIPProcessor.from_pretrained(patrickjohncyh_model_name) | |
| model_map = { | |
| openai_model_name: (openai_model, openai_processor), | |
| patrickjohncyh_model_name: (patrickjohncyh_model, patrickjohncyh_processor) | |
| } | |
| def gradio_process(model_name, image, text): | |
| (model, processor) = model_map[model_name] | |
| labels = text.split(", ") | |
| print (labels) | |
| start = time.time() | |
| inputs = processor(text=labels, images=image, return_tensors="pt", padding=True) | |
| outputs = model(**inputs) | |
| probs = outputs.logits_per_image.softmax(dim=1)[0] | |
| end = time.time() | |
| time_spent = end - start | |
| probs = list(probs) | |
| results = [] | |
| for i in range(len(labels)): | |
| results.append(f"{labels[i]} - {probs[i].item():.4f}") | |
| result = "\n".join(results) | |
| return [result, time_spent] | |
| with gr.TabItem("Zero-Shot Classification") as zero_shot_image_classification_tab: | |
| gr.Markdown("# Zero-Shot Image Classification") | |
| with gr.Row(): | |
| with gr.Column(): | |
| # Input components | |
| input_image = gr.Image(label="Upload Image", type="pil") | |
| input_text = gr.Textbox(label="Labels (comma separated)") | |
| model_selector = gr.Dropdown([openai_model_name, patrickjohncyh_model_name], | |
| label = "Select Model") | |
| # Process button | |
| process_btn = gr.Button("Classificate") | |
| with gr.Column(): | |
| # Output components | |
| elapsed_result = gr.Textbox(label="Seconds elapsed", lines=1) | |
| output_text = gr.Textbox(label="Classification") | |
| # Connect the input components to the processing function | |
| process_btn.click( | |
| fn=gradio_process, | |
| inputs=[ | |
| model_selector, | |
| input_image, | |
| input_text | |
| ], | |
| outputs=[output_text, elapsed_result] | |
| ) | |
| return zero_shot_image_classification_tab | |