topic_modelling / funcs /representation_model.py
seanpedrickcase's picture
Fixes on representation model, visualisations, and embeddings in CPU mode. Package updates and optimisation for compatibility
db3eaec
import os
import re
import spaces
from bertopic.representation import LlamaCPP
from pydantic import BaseModel
from huggingface_hub import hf_hub_download
from gradio import Warning
from bertopic.representation import KeyBERTInspired, MaximalMarginalRelevance, BaseRepresentation
from funcs.prompts import phi3_prompt, phi3_start
from funcs.helper_functions import get_or_create_env_var, GPU_SPACE_DURATION
def clean_llm_output_text(text: str) -> str:
"""
Clean LLM output text by removing special characters.
Keeps only: letters, numbers, spaces, dashes, and apostrophes (for contractions).
Args:
text: The text to clean
Returns:
Cleaned text with special characters removed
"""
if not text:
return ""
# Keep only alphanumeric characters, spaces, dashes, and apostrophes
# This regex keeps: a-z, A-Z, 0-9, spaces, hyphens/dashes, and apostrophes
cleaned = re.sub(r'[^a-zA-Z0-9\s\-\']', '', text)
# Clean up multiple spaces and strip
cleaned = re.sub(r'\s+', ' ', cleaned)
cleaned = cleaned.strip()
return cleaned
def patch_llama_create_chat_completion(llama_model):
"""
Monkey-patch the create_chat_completion method on a Llama model instance
to use raw completion instead of chat format handler.
This avoids the "System role not supported" error for models like phi3.
Args:
llama_model: The Llama model instance to patch
Returns:
The same llama_model instance with patched create_chat_completion method
"""
def patched_create_chat_completion(messages, **kwargs):
"""
Override create_chat_completion to use raw completion.
This avoids the chat format handler that requires system roles (not supported by phi3).
BERTopic's LlamaCPP formats messages and uses the prompt template, so we reconstruct
the full prompt from the messages.
"""
# Reconstruct the prompt from messages
# BERTopic's LlamaCPP passes messages in OpenAI format: [{"role": "user", "content": "..."}]
prompt_parts = []
for msg in messages:
if isinstance(msg, dict):
role = msg.get('role', 'user')
content = msg.get('content', '')
# Skip system messages as phi3 doesn't support them
if role != 'system' and content:
prompt_parts.append(content)
else:
prompt_parts.append(str(msg))
# Join all message contents into a single prompt
prompt = '\n'.join(prompt_parts) if prompt_parts else ''
# Use raw completion instead of chat completion
# This avoids the chat format handler that requires system roles
# Remove chat-specific kwargs that might cause issues, but enable streaming
completion_kwargs = {k: v for k, v in kwargs.items()
if k not in ['messages', 'chat_format', 'chat_handler']}
# Enable streaming to show output in real-time
completion_kwargs['stream'] = True
# Use create_completion for raw text completion (not chat completion)
# With stream=True, this returns a generator of CompletionChunk objects
text_parts = []
try:
# Create completion with streaming enabled
completion_stream = llama_model.create_completion(prompt, **completion_kwargs)
# Iterate through the stream and collect text
print("\nLLM Output: ", end="", flush=True) # Print prefix without newline
for chunk in completion_stream:
# Extract text from each chunk
chunk_text = ""
# Handle dictionary chunks (the format returned by llama_cpp)
if isinstance(chunk, dict):
# Extract from chunk['choices'][0]['text'] - this is the standard format
if 'choices' in chunk and len(chunk['choices']) > 0:
choice = chunk['choices'][0]
if isinstance(choice, dict):
chunk_text = choice.get('text', '') or choice.get('content', '')
elif hasattr(choice, 'text'):
chunk_text = choice.text
elif hasattr(choice, 'content'):
chunk_text = choice.content
elif 'text' in chunk:
chunk_text = chunk['text']
elif 'content' in chunk:
chunk_text = chunk['content']
# Try different ways to extract text from the chunk (object format)
elif hasattr(chunk, 'choices') and len(chunk.choices) > 0:
choice = chunk.choices[0]
if hasattr(choice, 'text'):
chunk_text = choice.text
elif hasattr(choice, 'delta') and hasattr(choice.delta, 'content'):
# Some formats use delta.content
chunk_text = choice.delta.content or ""
elif hasattr(choice, 'content'):
chunk_text = choice.content
elif isinstance(choice, dict):
chunk_text = choice.get('text', '') or choice.get('delta', {}).get('content', '')
elif hasattr(chunk, 'text'):
chunk_text = chunk.text
elif isinstance(chunk, str):
chunk_text = chunk
elif hasattr(chunk, '__dict__'):
# Check various possible attributes
chunk_dict = chunk.__dict__
if 'text' in chunk_dict:
chunk_text = chunk_dict['text']
elif 'choices' in chunk_dict:
choices = chunk_dict['choices']
if choices and len(choices) > 0:
if isinstance(choices[0], dict):
chunk_text = choices[0].get('text', '') or choices[0].get('delta', {}).get('content', '')
elif hasattr(choices[0], 'text'):
chunk_text = choices[0].text
elif hasattr(choices[0], 'delta'):
delta = choices[0].delta
if hasattr(delta, 'content'):
chunk_text = delta.content or ""
# Only add non-empty text and filter out debug messages
if chunk_text and chunk_text.strip():
# Filter out llama.cpp debug messages
if not any(debug_keyword in chunk_text for debug_keyword in [
'llama_perf_context_print', 'Llama.generate', 'load time',
'prompt eval time', 'eval time', 'total time', 'prefix-match hit'
]):
text_parts.append(chunk_text)
print(chunk_text, end="", flush=True) # Print without newline, flush immediately
print() # Newline after streaming is complete
text = ''.join(text_parts)
# Clean the text to remove special characters
text = clean_llm_output_text(text)
# If no text was collected, there might be an issue with chunk extraction
if not text:
print("Warning: No text extracted from streaming chunks. Chunk structure may be different.")
print("Falling back to non-streaming mode.")
raise Exception("No text in stream")
except (AttributeError, TypeError, Exception) as e:
# Fallback to non-streaming if create_completion doesn't exist or streaming fails
print(f"\nStreaming failed, falling back to non-streaming mode: {e}")
completion_kwargs.pop('stream', None) # Remove stream parameter
try:
completion = llama_model.create_completion(prompt, **completion_kwargs)
except AttributeError:
completion = llama_model(prompt, **completion_kwargs)
# Extract text from the completion object
text = ""
if hasattr(completion, 'choices') and len(completion.choices) > 0:
# Standard Completion object format
if hasattr(completion.choices[0], 'text'):
text = completion.choices[0].text
elif hasattr(completion.choices[0], 'content'):
text = completion.choices[0].content
elif hasattr(completion, 'text'):
# Direct text attribute
text = completion.text
elif isinstance(completion, str):
# Already a string
text = completion
elif hasattr(completion, '__dict__'):
# Try to get text from object attributes
if 'text' in completion.__dict__:
text = completion.__dict__['text']
elif 'choices' in completion.__dict__:
choices = completion.__dict__['choices']
if choices and len(choices) > 0:
if isinstance(choices[0], dict):
text = choices[0].get('text', '')
elif hasattr(choices[0], 'text'):
text = choices[0].text
else:
# Last resort: convert to string (but this might not work well)
text = str(completion)
# Clean up the text - remove special characters and whitespace
text = clean_llm_output_text(text) if text else ""
# Create a chat completion response as a dictionary
# BERTopic accesses it as: response["choices"][0]["message"]["content"]
# Always return a dictionary to ensure it's subscriptable
return {
"choices": [{
"message": {
"content": text,
"role": "assistant"
},
"finish_reason": "stop",
"index": 0
}],
"id": "custom",
"created": 0,
"model": "",
"object": "chat.completion"
}
# Replace the method on the instance
llama_model.create_chat_completion = patched_create_chat_completion
return llama_model
chosen_prompt = phi3_prompt #open_hermes_prompt # stablelm_prompt
chosen_start_tag = phi3_start #open_hermes_start # stablelm_start
random_seed = 42
RUNNING_ON_AWS = get_or_create_env_var('RUNNING_ON_AWS', '0')
print(f'The value of RUNNING_ON_AWS is {RUNNING_ON_AWS}')
USE_GPU = get_or_create_env_var('USE_GPU', '0')
print(f'The value of USE_GPU is {USE_GPU}')
# from torch import cuda, backends, version, get_num_threads
# print("Is CUDA enabled? ", cuda.is_available())
# print("Is a CUDA device available on this computer?", backends.cudnn.enabled)
# if cuda.is_available():
# torch_device = "gpu"
# print("Cuda version installed is: ", version.cuda)
# high_quality_mode = "Yes"
# os.system("nvidia-smi")
# else:
# torch_device = "cpu"
# high_quality_mode = "No"
if USE_GPU == "1":
print("Using GPU for representation functions")
torch_device = "gpu"
#print("Cuda version installed is: ", version.cuda)
high_quality_mode = "Yes"
os.system("nvidia-smi")
else:
print("Using CPU for representation functions")
torch_device = "cpu"
high_quality_mode = "No"
# Currently set n_gpu_layers to 0 even with cuda due to persistent bugs in implementation with cuda
print("torch device for representation functions:", torch_device)
if torch_device == "gpu":
low_resource_mode = "No"
n_gpu_layers = -1 # i.e. all
else: # torch_device = "cpu"
low_resource_mode = "Yes"
n_gpu_layers = 0
#print("Running on device:", torch_device)
from torch import get_num_threads
n_threads = get_num_threads()
print("CPU n_threads:", n_threads)
# Default Model parameters
temperature: float = 0.1
top_k: int = 3
top_p: float = 1
repeat_penalty: float = 1.1
last_n_tokens_size: int = 128
max_tokens: int = 500
seed: int = random_seed
reset: bool = True
stream: bool = False
n_threads: int = n_threads
n_batch:int = 512
n_ctx:int = 8192 #4096. # Set to 8192 just to avoid any exceeded context window issues
sample:bool = True
trust_remote_code:bool =True
class LLamacppInitConfigGpu(BaseModel):
last_n_tokens_size: int
seed: int
n_threads: int
n_batch: int
n_ctx: int
n_gpu_layers: int
temperature: float
top_k: int
top_p: float
repeat_penalty: float
max_tokens: int
reset: bool
stream: bool
stop: str
trust_remote_code:bool
def update_gpu(self, new_value: int):
self.n_gpu_layers = new_value
llm_config = LLamacppInitConfigGpu(last_n_tokens_size=last_n_tokens_size,
seed=seed,
n_threads=n_threads,
n_batch=n_batch,
n_ctx=n_ctx,
n_gpu_layers=n_gpu_layers,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repeat_penalty=repeat_penalty,
max_tokens=max_tokens,
reset=reset,
stream=stream,
stop=chosen_start_tag,
trust_remote_code=trust_remote_code)
## Create representation model parameters ##
keybert = KeyBERTInspired(random_state=random_seed)
mmr = MaximalMarginalRelevance(diversity=0.5)
base_rep = BaseRepresentation()
# Find model file
def find_model_file(hf_model_name: str, hf_model_file: str, search_folder: str, sub_folder: str) -> str:
"""
Finds the specified model file within the given search folder and subfolder.
Args:
hf_model_name (str): The name of the Hugging Face model.
hf_model_file (str): The specific file name of the model to find.
search_folder (str): The base folder to start the search.
sub_folder (str): The subfolder within the search folder to look into.
Returns:
str: The path to the found model file, or None if the file is not found.
"""
hf_loc = search_folder #os.environ["HF_HOME"]
hf_sub_loc = search_folder + sub_folder #os.environ["HF_HOME"]
if sub_folder == "/hub/":
hf_model_name_path = hf_sub_loc + 'models--' + hf_model_name.replace("/","--")
else:
hf_model_name_path = hf_sub_loc
def find_file(root_folder, file_name):
for root, dirs, files in os.walk(root_folder):
if file_name in files:
return os.path.join(root, file_name)
return None
# Example usage
folder_path = hf_model_name_path # Replace with your folder path
file_to_find = hf_model_file # Replace with the file name you're looking for
print("Searching for model file", hf_model_file, "in:", hf_model_name_path)
found_file = find_file(folder_path, file_to_find) # os.environ["HF_HOME"]
return found_file
@spaces.GPU(duration=GPU_SPACE_DURATION)
def create_representation_model(representation_type: str, llm_config: dict, hf_model_name: str, hf_model_file: str, chosen_start_tag: str, low_resource_mode: bool) -> dict:
"""
Creates a representation model based on the specified type and configuration.
Args:
representation_type (str): The type of representation model to create (e.g., "LLM", "KeyBERT").
llm_config (dict): Configuration settings for the LLM model.
hf_model_name (str): The name of the Hugging Face model.
hf_model_file (str): The specific file name of the model to find.
chosen_start_tag (str): The start tag to use for the model.
low_resource_mode (bool): Whether to enable low resource mode.
Returns:
dict: A dictionary containing the created representation model.
"""
if representation_type == "LLM":
print("RUNNING_ON_AWS:", RUNNING_ON_AWS)
if RUNNING_ON_AWS=="1":
error_message = "LLM representation not available on AWS due to model size restrictions. Returning base representation"
Warning(error_message, duration=5)
print(error_message)
representation_model = {"LLM":base_rep}
return representation_model
# Else import Llama
else:
from llama_cpp import Llama
print("Generating LLM representation")
# Use llama.cpp to load in model
# Check for HF_HOME environment variable and supply a default value if it's not found (typical location for huggingface models)
base_folder = "model" #"~/.cache/huggingface/hub"
hf_home_value = os.getenv("HF_HOME", base_folder)
# Expand the user symbol '~' to the full home directory path
if "~" in base_folder:
hf_home_value = os.path.expanduser(hf_home_value)
# Check if the directory exists, create it if it doesn't
if not os.path.exists(hf_home_value):
os.makedirs(hf_home_value)
print("Searching base folder for model:", hf_home_value)
found_file = find_model_file(hf_model_name, hf_model_file, hf_home_value, "/rep/")
if found_file:
print(f"Model file found in model folder: {found_file}")
else:
found_file = find_model_file(hf_model_name, hf_model_file, hf_home_value, "/hub/")
if not found_file:
error = "File not found in HF hub directory or in local model file."
print(error, " Downloading model from hub")
found_file = hf_hub_download(repo_id=hf_model_name, filename=hf_model_file)#, local_dir=hf_home_value) # cache_dir
print("Downloaded model from Huggingface Hub to: ", found_file)
print("Loading representation model with", llm_config.n_gpu_layers, "layers allocated to GPU.")
#llm_config.n_gpu_layers
# Initialize Llama model - try to disable chat format handler if supported
# This helps avoid "System role not supported" error for models like phi3
try:
llm = Llama(model_path=found_file, stop=chosen_start_tag, n_gpu_layers=llm_config.n_gpu_layers, n_ctx=llm_config.n_ctx, seed=seed, chat_format=None)
except TypeError:
# If chat_format parameter doesn't exist, try without it or with chat_handler
try:
llm = Llama(model_path=found_file, stop=chosen_start_tag, n_gpu_layers=llm_config.n_gpu_layers, n_ctx=llm_config.n_ctx, seed=seed, chat_handler=None)
except TypeError:
# Fall back to basic initialization if chat format parameters don't exist
llm = Llama(model_path=found_file, stop=chosen_start_tag, n_gpu_layers=llm_config.n_gpu_layers, n_ctx=llm_config.n_ctx, seed=seed)
# Monkey-patch the create_chat_completion method to use raw completion
# This avoids the chat format handler that requires system roles (not supported by phi3)
# We patch the instance directly so it still passes isinstance checks in BERTopic
llm = patch_llama_create_chat_completion(llm)
#print(llm.n_gpu_layers)
#print("Chosen prompt:", chosen_prompt)
llm_model = LlamaCPP(llm, prompt=chosen_prompt)#, **gen_config.model_dump())
# All representation models
representation_model = {
"LLM": llm_model
}
elif representation_type == "KeyBERT":
print("Generating KeyBERT representation")
#representation_model = {"mmr": mmr}
representation_model = {"KeyBERT": keybert}
elif representation_type == "MMR":
print("Generating MMR representation")
representation_model = {"MMR": mmr}
else:
print("Generating default representation type")
representation_model = {"Default":base_rep}
return representation_model