File size: 15,802 Bytes
136b539 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
import gradio as gr
import pandas as pd
from sklearn.preprocessing import LabelEncoder, OrdinalEncoder
import io
import numpy as np
import tempfile
import os
# ===========================================================
# Helper Functions
# ===========================================================
def file_summary(df):
if df is None:
return pd.DataFrame(), "⚠️ No data loaded."
memory_usage = df.memory_usage(deep=True)
column_types = []
for col in df.columns:
dtype = df[col].dtype
if pd.api.types.is_numeric_dtype(dtype):
unique_ratio = df[col].nunique() / len(df) if len(df) > 0 else 0
if unique_ratio < 0.05 or df[col].nunique() < 20:
column_types.append("Categorical (Numerical)")
else:
column_types.append("Continuous")
elif pd.api.types.is_object_dtype(dtype) or pd.api.types.is_categorical_dtype(dtype):
column_types.append("Categorical (String/Object)")
elif pd.api.types.is_bool_dtype(dtype):
column_types.append("Categorical (Boolean)")
else:
column_types.append("Other")
mem_vals = [round(df[c].memory_usage(deep=True) / 1024, 2) for c in df.columns]
summary_df = pd.DataFrame({
"Column": df.columns,
"Data Type": df.dtypes.values,
"Column Type": column_types,
"NULL Values": df.isnull().sum().values,
"Memory Size (KB)": mem_vals
})
return summary_df, f"📊 Summary Generated: {df.shape[1]} columns, {df.shape[0]} rows"
# ===========================================================
# Loading CSV + UI helpers
# ===========================================================
def load_csv(file):
if file is None:
return None, None, pd.DataFrame(), gr.update(choices=[]), gr.update(choices=[]), "⚠️ Please upload a CSV file."
try:
df = pd.read_csv(file.name)
cols = df.columns.tolist()
# Detect only encodable columns
encodable_cols = df.select_dtypes(include=["object", "category", "bool"]).columns.tolist()
summary, _ = file_summary(df)
return df, df.copy(), summary, gr.update(choices=cols), gr.update(choices=encodable_cols), f"✅ File loaded successfully! Shape: {df.shape}"
except Exception as e:
return None, None, pd.DataFrame(), gr.update(choices=[]), gr.update(choices=[]), f"❌ Error: {e}"
# ===========================================================
# Duplicate, Missing & Deletion
# ===========================================================
def check_duplicate_columns(df):
if df is None:
return "⚠️ Please load a dataset first."
dup_cols = df.columns[df.columns.duplicated()]
if len(dup_cols) == 0:
return "✅ No duplicate columns found."
return f"⚠️ Found duplicate columns: {', '.join(dup_cols)}"
def remove_duplicate_columns(df):
if df is None:
return df, "⚠️ Please load a dataset first."
dup_cols = df.columns[df.columns.duplicated()]
if len(dup_cols) == 0:
return df, "✅ No duplicate columns to remove."
df = df.loc[:, ~df.columns.duplicated()]
return df, f"✅ Removed duplicate columns: {', '.join(dup_cols)}"
def check_duplicate_rows(df):
if df is None:
return "⚠️ Please load a dataset first."
dup_rows = df.duplicated().sum()
if dup_rows == 0:
return "✅ No duplicate rows found."
return f"⚠️ Found {dup_rows} duplicate rows."
def remove_duplicate_rows(df):
if df is None:
return df, "⚠️ Please load a dataset first."
dup_rows = df.duplicated().sum()
if dup_rows == 0:
return df, "✅ No duplicate rows to remove."
df = df.drop_duplicates()
return df, f"✅ Removed {dup_rows} duplicate rows successfully."
def check_missing_columns(df):
if df is None:
return "⚠️ Please load a dataset first."
missing = df.isnull().sum()
cols_with_missing = missing[missing > 0]
if cols_with_missing.empty:
return "✅ No missing values found."
return f"⚠️ Columns with missing values: {', '.join(cols_with_missing.index)}"
def drop_high_missing(df):
if df is None:
return df, "⚠️ No data loaded."
missing_pct = df.isnull().mean() * 100
to_drop = missing_pct[missing_pct > 50].index.tolist()
if not to_drop:
return df, "✅ No columns with >50% missing values."
df = df.drop(columns=to_drop)
return df, f"✅ Dropped columns with >50% missing values: {', '.join(to_drop)}"
def delete_column(df, col):
if df is None:
return df, "⚠️ Please load a dataset first."
if col not in df.columns:
return df, f"⚠️ Column '{col}' not found."
df = df.drop(columns=[col])
return df, f"✅ Column '{col}' deleted."
# ===========================================================
# Missing Value Handler (Column-Type Based Logic)
# ===========================================================
def get_missing_columns(df):
if df is None:
return gr.update(choices=[]), "⚠️ Please load a dataset first."
cols = df.columns[df.isnull().any()].tolist()
if not cols:
return gr.update(choices=[]), "✅ No columns with missing values."
return gr.update(choices=cols), f"⚠️ Columns with missing values: {', '.join(cols)}"
def detect_column_type(df, column):
if df is None or column not in df.columns:
return "⚠️ Invalid column.", gr.update(choices=[])
dtype = df[column].dtype
if pd.api.types.is_numeric_dtype(dtype):
unique_ratio = df[column].nunique() / len(df)
if unique_ratio < 0.05 or df[column].nunique() < 20:
col_type = "Categorical (Numerical)"
options = ["Mode"]
else:
col_type = "Continuous (Numerical)"
options = ["Mean", "Median", "Mode"]
else:
col_type = "Categorical (String/Object)"
options = ["Mode"]
return f"🧩 Column Type: {col_type}", gr.update(choices=options, value=options[0])
def apply_missing_value(df, column, method):
if df is None:
return df, "⚠️ Please load a dataset first."
if column not in df.columns:
return df, f"⚠️ Column '{column}' not found."
if df[column].isnull().sum() == 0:
return df, f"✅ Column '{column}' has no missing values."
if pd.api.types.is_numeric_dtype(df[column]):
if method == "Mean":
df[column].fillna(df[column].mean(), inplace=True)
elif method == "Median":
df[column].fillna(df[column].median(), inplace=True)
elif method == "Mode":
df[column].fillna(df[column].mode().iloc[0], inplace=True)
else:
df[column].fillna(df[column].mode().iloc[0], inplace=True)
return df, f"✅ Missing values in '{column}' filled using {method}."
# ===========================================================
# Encoding + Download Functions
# ===========================================================
def show_value_counts(df, col, method):
"""Show value counts only if Ordinal Encoding is selected."""
if df is None or col not in df.columns:
return gr.DataFrame(value="⚠️ Please select a valid column.")
if method != "Ordinal Encoding":
return gr.DataFrame(value="ℹ️ Value counts visible only for Ordinal Encoding.")
counts = df[col].value_counts(dropna=False).reset_index()
counts.columns = [col, "Count"]
return counts
def encode_column(df, col, method, order):
if df is None:
return df, "⚠️ Please load a dataset first."
if col not in df.columns:
return df, "⚠️ Column not found."
if method == "Label Encoding":
le = LabelEncoder()
df[col] = le.fit_transform(df[col].astype(str))
return df, f"✅ Label Encoding applied on '{col}'."
elif method == "Ordinal Encoding":
if not order:
return df, "⚠️ Please provide order for Ordinal Encoding."
# Normalize both the column values and user-provided order for comparison
df[col] = df[col].astype(str).str.strip()
user_order = [x.strip() for x in order if x.strip()]
col_values = sorted(df[col].dropna().unique().tolist())
# Check if user provided valid categories
missing_from_col = [x for x in user_order if x not in col_values]
extra_in_col = [x for x in col_values if x not in user_order]
if missing_from_col:
return df, f"❌ Invalid category(s): {missing_from_col}. Please check spelling/case. Existing values: {col_values}"
if extra_in_col:
msg = f"⚠️ Warning: Some values in column were not in the provided order and will be encoded as NaN: {extra_in_col}"
else:
msg = ""
try:
oe = OrdinalEncoder(categories=[user_order])
df[col] = oe.fit_transform(df[[col]])
return df, f"✅ Ordinal Encoding applied on '{col}' with order {user_order}. {msg}"
except Exception as e:
return df, f"❌ Error during encoding: {e}"
return df, "⚠️ Invalid encoding method."
# ===========================================================
# Column Normalization & Renaming Functions
# ===========================================================
def normalize_column_names(df):
"""Convert all column names to lowercase, strip spaces, and replace internal spaces with underscores."""
if df is None:
return df, "⚠️ Please load a dataset first."
original_cols = df.columns.tolist()
new_cols = [col.strip().lower().replace(" ", "_") for col in original_cols]
rename_map = {old: new for old, new in zip(original_cols, new_cols) if old != new}
df.columns = new_cols
if not rename_map:
return df, "✅ All column names were already normalized."
return df, f"✅ Column names normalized: {rename_map}"
def rename_single_column(df, old_col, new_col):
"""Rename one specific column."""
if df is None:
return df, "⚠️ Please load a dataset first."
if old_col not in df.columns:
return df, f"⚠️ Column '{old_col}' not found."
if not new_col.strip():
return df, "⚠️ Please enter a valid new column name."
df = df.rename(columns={old_col: new_col.strip()})
return df, f"✅ Column '{old_col}' renamed to '{new_col.strip()}'."
# ===========================================================
# Data Type Conversion (Numerical Columns)
# ===========================================================
def get_numeric_columns(df):
"""Return a list of numeric columns for dtype conversion."""
if df is None:
return gr.update(choices=[]), "⚠️ Please load a dataset first."
num_cols = df.select_dtypes(include=["int", "float", "complex"]).columns.tolist()
if not num_cols:
return gr.update(choices=[]), "✅ No numeric columns available for conversion."
return gr.update(choices=num_cols), f"🔢 Numeric columns available: {', '.join(num_cols)}"
def show_current_dtype(df, col):
"""Display the current dtype of the selected numeric column."""
if df is None or col not in df.columns:
return "⚠️ Please select a valid column."
dtype = str(df[col].dtype)
return f"📘 Current Data Type: {dtype}"
def change_column_dtype(df, col, new_dtype):
"""Change the data type of a numeric column using pandas .astype()."""
if df is None:
return df, "⚠️ Please load a dataset first."
if col not in df.columns:
return df, f"⚠️ Column '{col}' not found."
if not new_dtype:
return df, "⚠️ Please select a new data type."
try:
df[col] = df[col].astype(new_dtype)
return df, f"✅ Column '{col}' converted to type '{new_dtype}'."
except Exception as e:
return df, f"❌ Conversion failed: {e}"
# ===========================================================
# Outlier Detection & Handling Functions
# ===========================================================
def get_continuous_columns(df):
"""Detect all numerical columns (int and float) for outlier handling."""
if df is None:
return gr.update(choices=[]), "⚠️ Please load a dataset first."
numeric_cols = df.select_dtypes(include=["int", "float"]).columns.tolist()
if not numeric_cols:
return gr.update(choices=[]), "✅ No numerical columns found."
return gr.update(choices=numeric_cols), f"📊 Numerical columns detected: {', '.join(numeric_cols)}"
def show_column_stats(df, col):
"""Display basic stats for selected continuous column."""
if df is None or col not in df.columns:
return "⚠️ Please select a valid column."
stats = df[col].describe().to_dict()
return (
f"📈 Column: {col}\n"
f"Mean: {stats['mean']:.3f}, Std: {stats['std']:.3f}, Min: {stats['min']:.3f}, Max: {stats['max']:.3f}"
)
def handle_outliers(df, col, method, threshold):
"""Apply chosen outlier handling technique."""
if df is None:
return df, "⚠️ Please load a dataset first."
if col not in df.columns:
return df, f"⚠️ Column '{col}' not found."
if not pd.api.types.is_numeric_dtype(df[col]):
return df, f"⚠️ Column '{col}' is not numeric."
if threshold is None or str(threshold).strip() == "":
return df, "⚠️ Please enter a valid threshold value."
try:
threshold = float(threshold)
except:
return df, "⚠️ Threshold value must be numeric."
series = df[col]
# IQR method
if method == "IQR":
Q1, Q3 = series.quantile(0.25), series.quantile(0.75)
IQR = Q3 - Q1
lower = Q1 - threshold * IQR
upper = Q3 + threshold * IQR
before = series.copy()
df[col] = np.clip(series, lower, upper)
return df, f"✅ IQR method applied with threshold={threshold}. Clipped {sum(before != df[col])} outliers."
# Z-score method
elif method == "Z-score":
mean, std = series.mean(), series.std()
z_scores = (series - mean) / std
mask = np.abs(z_scores) > threshold
before = series.copy()
df.loc[mask, col] = mean # replace with mean
return df, f"✅ Z-score method applied (|Z| > {threshold}). Replaced {mask.sum()} outliers with mean."
# Winsorization
elif method == "Winsorization":
lower = series.quantile(threshold / 100)
upper = series.quantile(1 - threshold / 100)
before = series.copy()
df[col] = np.clip(series, lower, upper)
return df, f"✅ Winsorization applied with {threshold}% tails capped."
# Min-Max clipping
elif method == "MinMax":
min_val = series.min()
max_val = series.max()
lower = min_val + threshold * (max_val - min_val)
upper = max_val - threshold * (max_val - min_val)
before = series.copy()
df[col] = np.clip(series, lower, upper)
return df, f"✅ Min-Max clipping applied with threshold={threshold}. Clipped {sum(before != df[col])} values."
else:
return df, "⚠️ Invalid outlier handling method selected."
# ===========================================================
# Downloading the Cleaned CSV File
# ===========================================================
def make_csv_download(df):
if df is None or df.empty:
return None
# Create a temporary file
temp_dir = tempfile.gettempdir()
temp_path = os.path.join(temp_dir, "cleaned_data.csv")
df.to_csv(temp_path, index=False)
return temp_path
|