medical-report-analyzer / model_loader.py
snikhilesh's picture
Deploy backend with monitoring infrastructure - Complete Medical AI Platform
13d5ab4 verified
"""
Real Model Loader for Hugging Face Models
Manages model loading, caching, and inference
Works with public HuggingFace models without requiring authentication
"""
import os
import logging
from typing import Dict, Any, Optional, List
from functools import lru_cache
# Required ML libraries - these MUST be installed
import torch
from transformers import (
AutoTokenizer,
AutoModel,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
pipeline
)
logger = logging.getLogger(__name__)
# Get HF token from environment (optional - most models are public)
HF_TOKEN = os.getenv("HF_TOKEN", None)
if HF_TOKEN:
logger.info("HF_TOKEN found - will use for gated models if needed")
else:
logger.info("HF_TOKEN not found - using public models only (this is normal)")
class ModelLoader:
"""
Manages loading and caching of Hugging Face models
Implements lazy loading and GPU optimization
"""
def __init__(self):
"""Initialize the model loader with GPU support if available"""
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.loaded_models = {}
self.model_configs = self._get_model_configs()
# Log system information
logger.info(f"Model Loader initialized on device: {self.device}")
logger.info(f"PyTorch version: {torch.__version__}")
logger.info(f"CUDA available: {torch.cuda.is_available()}")
# Verify model configs are properly loaded
logger.info(f"Model configurations loaded: {len(self.model_configs)} models")
for key in self.model_configs:
logger.info(f" - {key}: {self.model_configs[key]['model_id']}")
def _get_model_configs(self) -> Dict[str, Dict[str, Any]]:
"""
Configuration for real Hugging Face models
Maps tasks to actual model names on Hugging Face Hub
"""
return {
# Document Classification
"document_classifier": {
"model_id": "emilyalsentzer/Bio_ClinicalBERT",
"task": "text-classification",
"description": "Clinical document type classification"
},
# Clinical NER
"clinical_ner": {
"model_id": "d4data/biomedical-ner-all",
"task": "ner",
"description": "Biomedical named entity recognition"
},
# Clinical Text Generation
"clinical_generation": {
"model_id": "microsoft/BioGPT-Large",
"task": "text-generation",
"description": "Clinical text generation and summarization"
},
# Medical Question Answering
"medical_qa": {
"model_id": "deepset/roberta-base-squad2",
"task": "question-answering",
"description": "Medical question answering"
},
# General Medical Analysis
"general_medical": {
"model_id": "microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext",
"task": "feature-extraction",
"description": "General medical text understanding"
},
# Drug-Drug Interaction
"drug_interaction": {
"model_id": "allenai/scibert_scivocab_uncased",
"task": "feature-extraction",
"description": "Drug interaction detection"
},
# Radiology Report Generation (fallback to general medical)
"radiology_generation": {
"model_id": "microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract",
"task": "feature-extraction",
"description": "Radiology report analysis"
},
# Clinical Summarization
"clinical_summarization": {
"model_id": "google/bigbird-pegasus-large-pubmed",
"task": "summarization",
"description": "Clinical document summarization"
}
}
def load_model(self, model_key: str) -> Optional[Any]:
"""
Load a model by key, with caching
Most HuggingFace models are public and don't require authentication.
HF_TOKEN is only needed for private/gated models.
"""
try:
# Check if already loaded
if model_key in self.loaded_models:
logger.info(f"Using cached model: {model_key}")
return self.loaded_models[model_key]
# Get model configuration
if model_key not in self.model_configs:
logger.warning(f"Unknown model key: {model_key}, using fallback")
model_key = "general_medical"
config = self.model_configs[model_key]
model_id = config["model_id"]
task = config["task"]
logger.info(f"Loading model: {model_id} for task: {task}")
# Try loading with pipeline (works for most public models)
# Pass token only if available (most models don't need it)
try:
pipeline_kwargs = {
"task": task,
"model": model_id,
"device": 0 if self.device == "cuda" else -1,
"trust_remote_code": True
}
# Only add token if it exists (avoid passing None/empty string)
if HF_TOKEN:
pipeline_kwargs["token"] = HF_TOKEN
model_pipeline = pipeline(**pipeline_kwargs)
self.loaded_models[model_key] = model_pipeline
logger.info(f"Successfully loaded model: {model_id}")
return model_pipeline
except Exception as e:
error_msg = str(e).lower()
# Check if it's an authentication error
if "401" in error_msg or "unauthorized" in error_msg or "authentication" in error_msg:
if not HF_TOKEN:
logger.error(f"Model {model_id} requires authentication but HF_TOKEN not available")
logger.error("This model is gated/private. Using public alternative or fallback.")
else:
logger.error(f"Model {model_id} authentication failed even with HF_TOKEN")
else:
logger.error(f"Failed to load model {model_id}: {str(e)}")
# Try loading with AutoModel as fallback
try:
logger.info(f"Trying alternative loading method for {model_id}...")
tokenizer_kwargs = {"model_id": model_id, "trust_remote_code": True}
model_kwargs = {"pretrained_model_name_or_path": model_id, "trust_remote_code": True}
if HF_TOKEN:
tokenizer_kwargs["token"] = HF_TOKEN
model_kwargs["token"] = HF_TOKEN
tokenizer = AutoTokenizer.from_pretrained(**tokenizer_kwargs)
model = AutoModel.from_pretrained(**model_kwargs).to(self.device)
self.loaded_models[model_key] = {
"tokenizer": tokenizer,
"model": model,
"type": "custom"
}
logger.info(f"Successfully loaded {model_id} with alternative method")
return self.loaded_models[model_key]
except Exception as inner_e:
logger.error(f"Alternative loading also failed for {model_id}: {str(inner_e)}")
logger.info(f"Model {model_key} unavailable - will use fallback analysis")
return None
except Exception as e:
logger.error(f"Model loading failed for {model_key}: {str(e)}")
return None
def run_inference(
self,
model_key: str,
input_text: str,
task_params: Optional[Dict[str, Any]] = None
) -> Dict[str, Any]:
"""
Run inference on loaded model
"""
try:
model = self.load_model(model_key)
if model is None:
return {
"error": "Model not available",
"model_key": model_key
}
task_params = task_params or {}
# Handle pipeline models
if hasattr(model, '__call__') and not isinstance(model, dict):
# Truncate input to avoid token limit issues
max_length = task_params.get("max_length", 512)
result = model(
input_text[:4000], # Limit input length
max_length=max_length,
truncation=True,
**task_params
)
return {
"success": True,
"result": result,
"model_key": model_key
}
# Handle custom loaded models
elif isinstance(model, dict) and model.get("type") == "custom":
tokenizer = model["tokenizer"]
model_obj = model["model"]
inputs = tokenizer(
input_text[:512],
return_tensors="pt",
truncation=True,
max_length=512
).to(self.device)
with torch.no_grad():
outputs = model_obj(**inputs)
return {
"success": True,
"result": {
"embeddings": outputs.last_hidden_state.mean(dim=1).cpu().tolist(),
"pooled": outputs.pooler_output.cpu().tolist() if hasattr(outputs, 'pooler_output') else None
},
"model_key": model_key
}
else:
return {
"error": "Unknown model type",
"model_key": model_key
}
except Exception as e:
logger.error(f"Inference failed for {model_key}: {str(e)}")
return {
"error": str(e),
"model_key": model_key
}
def clear_cache(self, model_key: Optional[str] = None):
"""Clear model cache to free memory"""
if model_key:
if model_key in self.loaded_models:
del self.loaded_models[model_key]
logger.info(f"Cleared cache for model: {model_key}")
else:
self.loaded_models.clear()
logger.info("Cleared all model caches")
# Force garbage collection and clear GPU cache if available
if torch.cuda.is_available():
torch.cuda.empty_cache()
def test_model_loading(self) -> Dict[str, Any]:
"""Test loading all configured models to verify AI functionality"""
results = {
"total_models": len(self.model_configs),
"models_loaded": 0,
"models_failed": 0,
"errors": [],
"device": self.device,
"pytorch_version": torch.__version__
}
for model_key, config in self.model_configs.items():
try:
logger.info(f"Testing model: {model_key} ({config['model_id']})")
# Try to load the model
test_input = "Test ECG analysis request"
result = self.run_inference(model_key, test_input, {"max_new_tokens": 50})
if result.get("success"):
results["models_loaded"] += 1
logger.info(f"✅ {model_key}: Loaded successfully")
else:
results["models_failed"] += 1
error_msg = result.get("error", "Unknown error")
results["errors"].append(f"{model_key}: {error_msg}")
logger.warning(f"⚠️ {model_key}: {error_msg}")
except Exception as e:
results["models_failed"] += 1
error_msg = f"Exception during loading: {str(e)}"
results["errors"].append(f"{model_key}: {error_msg}")
logger.error(f"❌ {model_key}: {error_msg}")
logger.info(f"Model loading test complete: {results['models_loaded']}/{results['total_models']} successful")
return results
# Global model loader instance
_model_loader = None
def get_model_loader() -> ModelLoader:
"""Get singleton model loader instance"""
global _model_loader
if _model_loader is None:
_model_loader = ModelLoader()
return _model_loader