Spaces:
Runtime error
Runtime error
add model path
Browse files
app.py
CHANGED
|
@@ -295,11 +295,14 @@ def fn_traj_reset():
|
|
| 295 |
###########################################
|
| 296 |
model_path='./checkpoints/motionctrl.pth'
|
| 297 |
config_path='./configs/inference/config_both.yaml'
|
|
|
|
|
|
|
| 298 |
|
| 299 |
config = OmegaConf.load(config_path)
|
| 300 |
model_config = config.pop("model", OmegaConf.create())
|
| 301 |
model = instantiate_from_config(model_config)
|
| 302 |
-
|
|
|
|
| 303 |
|
| 304 |
model = load_model_checkpoint(model, model_path)
|
| 305 |
model.eval()
|
|
@@ -332,21 +335,29 @@ def model_run(prompts, infer_mode, seed, n_samples):
|
|
| 332 |
|
| 333 |
if infer_mode == MODE[0]:
|
| 334 |
camera_poses = RT
|
| 335 |
-
camera_poses = torch.tensor(camera_poses).float()
|
| 336 |
camera_poses = camera_poses.unsqueeze(0)
|
| 337 |
trajs = None
|
|
|
|
|
|
|
| 338 |
elif infer_mode == MODE[1]:
|
| 339 |
trajs = traj_flow
|
| 340 |
-
trajs = torch.tensor(trajs).float()
|
| 341 |
trajs = trajs.unsqueeze(0)
|
| 342 |
camera_poses = None
|
|
|
|
|
|
|
| 343 |
else:
|
| 344 |
camera_poses = RT
|
| 345 |
trajs = traj_flow
|
| 346 |
-
camera_poses = torch.tensor(camera_poses).float()
|
| 347 |
-
trajs = torch.tensor(trajs).float()
|
| 348 |
camera_poses = camera_poses.unsqueeze(0)
|
| 349 |
trajs = trajs.unsqueeze(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 350 |
|
| 351 |
ddim_sampler = DDIMSampler(model)
|
| 352 |
batch_size = noise_shape[0]
|
|
|
|
| 295 |
###########################################
|
| 296 |
model_path='./checkpoints/motionctrl.pth'
|
| 297 |
config_path='./configs/inference/config_both.yaml'
|
| 298 |
+
if not os.path.exists(model_path):
|
| 299 |
+
os.system(f'wget https://huggingface.co/TencentARC/MotionCtrl/resolve/main/motionctrl.pth?download=true -P ./checkpoints/')
|
| 300 |
|
| 301 |
config = OmegaConf.load(config_path)
|
| 302 |
model_config = config.pop("model", OmegaConf.create())
|
| 303 |
model = instantiate_from_config(model_config)
|
| 304 |
+
if torch.cuda.is_available():
|
| 305 |
+
model = model.cuda()
|
| 306 |
|
| 307 |
model = load_model_checkpoint(model, model_path)
|
| 308 |
model.eval()
|
|
|
|
| 335 |
|
| 336 |
if infer_mode == MODE[0]:
|
| 337 |
camera_poses = RT
|
| 338 |
+
camera_poses = torch.tensor(camera_poses).float()
|
| 339 |
camera_poses = camera_poses.unsqueeze(0)
|
| 340 |
trajs = None
|
| 341 |
+
if torch.cuda.is_available():
|
| 342 |
+
camera_poses = camera_poses.cuda()
|
| 343 |
elif infer_mode == MODE[1]:
|
| 344 |
trajs = traj_flow
|
| 345 |
+
trajs = torch.tensor(trajs).float()
|
| 346 |
trajs = trajs.unsqueeze(0)
|
| 347 |
camera_poses = None
|
| 348 |
+
if torch.cuda.is_available():
|
| 349 |
+
trajs = trajs.cuda()
|
| 350 |
else:
|
| 351 |
camera_poses = RT
|
| 352 |
trajs = traj_flow
|
| 353 |
+
camera_poses = torch.tensor(camera_poses).float()
|
| 354 |
+
trajs = torch.tensor(trajs).float()
|
| 355 |
camera_poses = camera_poses.unsqueeze(0)
|
| 356 |
trajs = trajs.unsqueeze(0)
|
| 357 |
+
if torch.cuda.is_available():
|
| 358 |
+
camera_poses = camera_poses.cuda()
|
| 359 |
+
trajs = trajs.cuda()
|
| 360 |
+
|
| 361 |
|
| 362 |
ddim_sampler = DDIMSampler(model)
|
| 363 |
batch_size = noise_shape[0]
|