Spaces:
Sleeping
Sleeping
File size: 1,286 Bytes
51a174a b9089ed 51a174a b9089ed 51a174a b9089ed 51a174a b9089ed 51a174a b9089ed 51a174a b9089ed 51a174a b9089ed 51a174a 351984d b9089ed 51a174a b9089ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import gradio as gr
from transformers import pipeline
from PIL import Image
import torch
# Load the Hugging Face model
MODEL_ID = "jacoballessio/ai-image-detect-distilled"
pipe = pipeline("image-classification", model=MODEL_ID)
# Prediction function
def predict_image(image):
try:
results = pipe(image)
# Extract top two predictions
top_results = sorted(results, key=lambda x: x['score'], reverse=True)[:2]
labels = [r['label'] for r in top_results]
scores = [round(r['score'] * 100, 2) for r in top_results]
# Determine final result
final_label = labels[0]
final_score = scores[0]
# Display result
return {
"Model Results": top_results,
"Final AI Probability (%)": final_score,
"Overall Decision": "AI-generated" if "ai" in final_label.lower() else "Human"
}
except Exception as e:
return {"error": str(e)}
# Gradio Interface
iface = gr.Interface(
fn=predict_image,
inputs=gr.Image(type="pil", label="Upload Image"),
outputs="json",
title="AI Image Detector",
description="Detect whether an image is AI-generated or real using Jacob Allessio's distilled model."
)
if __name__ == "__main__":
iface.launch() |