Update app/webui/patch.py
Browse files- app/webui/patch.py +168 -163
app/webui/patch.py
CHANGED
|
@@ -1,164 +1,169 @@
|
|
| 1 |
-
# a monkey patch to use llama-index completion
|
| 2 |
-
import os
|
| 3 |
-
import time
|
| 4 |
-
|
| 5 |
-
from
|
| 6 |
-
from
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
from llama_index.llms.
|
| 11 |
-
from llama_index.llms.
|
| 12 |
-
from llama_index.llms.
|
| 13 |
-
from llama_index.llms.
|
| 14 |
-
from llama_index.llms.
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
from llama_index.core
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
RPM
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
If json_mode is
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
llm = Settings.llm
|
| 119 |
-
if llm.class_name() == "HuggingFaceInferenceAPI":
|
| 120 |
-
llm.system_prompt = system_message
|
| 121 |
-
messages = [
|
| 122 |
-
ChatMessage(
|
| 123 |
-
role="user", content=prompt),
|
| 124 |
-
]
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
ChatMessage(
|
| 136 |
-
role="
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
response
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
calculate_chunk_size =utils.calculate_chunk_size
|
|
|
|
| 1 |
+
# a monkey patch to use llama-index completion
|
| 2 |
+
import os
|
| 3 |
+
import time
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from functools import wraps
|
| 6 |
+
from threading import Lock
|
| 7 |
+
from typing import Union
|
| 8 |
+
import src.translation_agent.utils as utils
|
| 9 |
+
|
| 10 |
+
from llama_index.llms.groq import Groq
|
| 11 |
+
from llama_index.llms.cohere import Cohere
|
| 12 |
+
from llama_index.llms.openai import OpenAI
|
| 13 |
+
from llama_index.llms.together import TogetherLLM
|
| 14 |
+
from llama_index.llms.ollama import Ollama
|
| 15 |
+
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
| 16 |
+
|
| 17 |
+
from llama_index.core import Settings
|
| 18 |
+
from llama_index.core.llms import ChatMessage
|
| 19 |
+
|
| 20 |
+
RPM = 60
|
| 21 |
+
|
| 22 |
+
# Add your LLMs here
|
| 23 |
+
def model_load(
|
| 24 |
+
endpoint: str,
|
| 25 |
+
model: str,
|
| 26 |
+
api_key: str = None,
|
| 27 |
+
context_window: int = 4096,
|
| 28 |
+
num_output: int = 512,
|
| 29 |
+
rpm: int = RPM,
|
| 30 |
+
):
|
| 31 |
+
if endpoint == "Groq":
|
| 32 |
+
llm = Groq(
|
| 33 |
+
model=model,
|
| 34 |
+
api_key=api_key if api_key else os.getenv("GROQ_API_KEY"),
|
| 35 |
+
)
|
| 36 |
+
elif endpoint == "Cohere":
|
| 37 |
+
llm = Cohere(
|
| 38 |
+
model=model,
|
| 39 |
+
api_key=api_key if api_key else os.getenv("COHERE_API_KEY"),
|
| 40 |
+
)
|
| 41 |
+
elif endpoint == "OpenAI":
|
| 42 |
+
llm = OpenAI(
|
| 43 |
+
model=model,
|
| 44 |
+
api_key=api_key if api_key else os.getenv("OPENAI_API_KEY"),
|
| 45 |
+
)
|
| 46 |
+
elif endpoint == "TogetherAI":
|
| 47 |
+
llm = TogetherLLM(
|
| 48 |
+
model=model,
|
| 49 |
+
api_key=api_key if api_key else os.getenv("TOGETHER_API_KEY"),
|
| 50 |
+
)
|
| 51 |
+
elif endpoint == "Ollama":
|
| 52 |
+
llm = Ollama(
|
| 53 |
+
model=model,
|
| 54 |
+
request_timeout=120.0)
|
| 55 |
+
elif endpoint == "Huggingface":
|
| 56 |
+
llm = HuggingFaceInferenceAPI(
|
| 57 |
+
model_name=model,
|
| 58 |
+
token=api_key if api_key else os.getenv("HF_TOKEN"),
|
| 59 |
+
task="text-generation",
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
global RPM
|
| 63 |
+
RPM = rpm
|
| 64 |
+
|
| 65 |
+
Settings.llm = llm
|
| 66 |
+
# maximum input size to the LLM
|
| 67 |
+
Settings.context_window = context_window
|
| 68 |
+
|
| 69 |
+
# number of tokens reserved for text generation.
|
| 70 |
+
Settings.num_output = num_output
|
| 71 |
+
|
| 72 |
+
def rate_limit(get_max_per_minute):
|
| 73 |
+
def decorator(func):
|
| 74 |
+
lock = Lock()
|
| 75 |
+
last_called = [0.0]
|
| 76 |
+
|
| 77 |
+
@wraps(func)
|
| 78 |
+
def wrapper(*args, **kwargs):
|
| 79 |
+
with lock:
|
| 80 |
+
max_per_minute = get_max_per_minute()
|
| 81 |
+
min_interval = 60.0 / max_per_minute
|
| 82 |
+
elapsed = time.time() - last_called[0]
|
| 83 |
+
left_to_wait = min_interval - elapsed
|
| 84 |
+
|
| 85 |
+
if left_to_wait > 0:
|
| 86 |
+
time.sleep(left_to_wait)
|
| 87 |
+
|
| 88 |
+
ret = func(*args, **kwargs)
|
| 89 |
+
last_called[0] = time.time()
|
| 90 |
+
return ret
|
| 91 |
+
return wrapper
|
| 92 |
+
return decorator
|
| 93 |
+
|
| 94 |
+
@rate_limit(lambda: RPM)
|
| 95 |
+
def get_completion(
|
| 96 |
+
prompt: str,
|
| 97 |
+
system_message: str = "You are a helpful assistant.",
|
| 98 |
+
temperature: float = 0.3,
|
| 99 |
+
json_mode: bool = False,
|
| 100 |
+
) -> Union[str, dict]:
|
| 101 |
+
"""
|
| 102 |
+
Generate a completion using the OpenAI API.
|
| 103 |
+
|
| 104 |
+
Args:
|
| 105 |
+
prompt (str): The user's prompt or query.
|
| 106 |
+
system_message (str, optional): The system message to set the context for the assistant.
|
| 107 |
+
Defaults to "You are a helpful assistant.".
|
| 108 |
+
temperature (float, optional): The sampling temperature for controlling the randomness of the generated text.
|
| 109 |
+
Defaults to 0.3.
|
| 110 |
+
json_mode (bool, optional): Whether to return the response in JSON format.
|
| 111 |
+
Defaults to False.
|
| 112 |
+
|
| 113 |
+
Returns:
|
| 114 |
+
Union[str, dict]: The generated completion.
|
| 115 |
+
If json_mode is True, returns the complete API response as a dictionary.
|
| 116 |
+
If json_mode is False, returns the generated text as a string.
|
| 117 |
+
"""
|
| 118 |
+
llm = Settings.llm
|
| 119 |
+
if llm.class_name() == "HuggingFaceInferenceAPI":
|
| 120 |
+
llm.system_prompt = system_message
|
| 121 |
+
messages = [
|
| 122 |
+
ChatMessage(
|
| 123 |
+
role="user", content=prompt),
|
| 124 |
+
]
|
| 125 |
+
try:
|
| 126 |
+
response = llm.chat(
|
| 127 |
+
messages=messages,
|
| 128 |
+
temperature=temperature,
|
| 129 |
+
)
|
| 130 |
+
return response.message.content
|
| 131 |
+
except Exception as e:
|
| 132 |
+
raise gr.Error(f"An unexpected error occurred: {e}")
|
| 133 |
+
else:
|
| 134 |
+
messages = [
|
| 135 |
+
ChatMessage(
|
| 136 |
+
role="system", content=system_message),
|
| 137 |
+
ChatMessage(
|
| 138 |
+
role="user", content=prompt),
|
| 139 |
+
]
|
| 140 |
+
|
| 141 |
+
if json_mode:
|
| 142 |
+
response = llm.chat(
|
| 143 |
+
temperature=temperature,
|
| 144 |
+
response_format={"type": "json_object"},
|
| 145 |
+
messages=messages,
|
| 146 |
+
)
|
| 147 |
+
return response.message.content
|
| 148 |
+
else:
|
| 149 |
+
try:
|
| 150 |
+
response = llm.chat(
|
| 151 |
+
temperature=temperature,
|
| 152 |
+
messages=messages,
|
| 153 |
+
)
|
| 154 |
+
return response.message.content
|
| 155 |
+
except Exception as e:
|
| 156 |
+
raise gr.Error(f"An unexpected error occurred: {e}")
|
| 157 |
+
|
| 158 |
+
utils.get_completion = get_completion
|
| 159 |
+
|
| 160 |
+
one_chunk_initial_translation = utils.one_chunk_initial_translation
|
| 161 |
+
one_chunk_reflect_on_translation = utils.one_chunk_reflect_on_translation
|
| 162 |
+
one_chunk_improve_translation = utils.one_chunk_improve_translation
|
| 163 |
+
one_chunk_translate_text = utils.one_chunk_translate_text
|
| 164 |
+
num_tokens_in_string = utils.num_tokens_in_string
|
| 165 |
+
multichunk_initial_translation = utils.multichunk_initial_translation
|
| 166 |
+
multichunk_reflect_on_translation = utils.multichunk_reflect_on_translation
|
| 167 |
+
multichunk_improve_translation = utils.multichunk_improve_translation
|
| 168 |
+
multichunk_translation = utils.multichunk_translation
|
| 169 |
calculate_chunk_size =utils.calculate_chunk_size
|