import gradio as gr import numpy as np import random from typing import Optional # import spaces #[uncomment to use ZeroGPU] from diffusers import DiffusionPipeline from diffusers import ( DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, KDPM2DiscreteScheduler, KDPM2AncestralDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, HeunDiscreteScheduler, LMSDiscreteScheduler, ) import torch device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 # @spaces.GPU #[uncomment to use ZeroGPU] def infer( model_id, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, scheduler: Optional[str] = None, progress=gr.Progress(track_tqdm=True), ): pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype) match scheduler: case None: pass case "DPMSolverMultistepScheduler": if DPMSolverMultistepScheduler in pipe.scheduler.compatibles: scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.scheduler = scheduler case "DPMSolverSinglestepScheduler": if DPMSolverSinglestepScheduler in pipe.scheduler.compatibles: scheduler = DPMSolverSinglestepScheduler.from_config(pipe.scheduler.config) pipe.scheduler = scheduler case "KDPM2DiscreteScheduler": if KDPM2DiscreteScheduler in pipe.scheduler.compatibles: scheduler = KDPM2DiscreteScheduler.from_config(pipe.scheduler.config) pipe.scheduler = scheduler case "KDPM2AncestralDiscreteScheduler": if KDPM2AncestralDiscreteScheduler in pipe.scheduler.compatibles: scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.scheduler = scheduler case "EulerDiscreteScheduler": if EulerDiscreteScheduler in pipe.scheduler.compatibles: scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.scheduler = scheduler case "EulerAncestralDiscreteScheduler": if EulerAncestralDiscreteScheduler in pipe.scheduler.compatibles: scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.scheduler = scheduler case "HeunDiscreteScheduler": if HeunDiscreteScheduler in pipe.scheduler.compatibles: scheduler = HeunDiscreteScheduler.from_config(pipe.scheduler.config) pipe.scheduler = scheduler case "LMSDiscreteScheduler": if LMSDiscreteScheduler in pipe.scheduler.compatibles: scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.scheduler = scheduler pipe = pipe.to(device) if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, ).images[0] return image, seed examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # Text-to-Image Gradio Template") model_id = gr.Dropdown( ["stabilityai/sdxl-turbo", "lightx2v/Qwen-Image-Lightning", "tencent/SRPO", "hakurei/waifu-diffusion"], label="Image-to-text model", visible=True, ) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=True, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) scheduler = gr.Dropdown( [None, "DPMSolverMultistepScheduler", "DPMSolverSinglestepScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "EulerDiscreteScheduler", "EulerAncestralDiscreteScheduler", "HeunDiscreteScheduler", "LMSDiscreteScheduler",], label="Scheduler", visible=True ) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, # Replace with defaults that work for your model ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, # Replace with defaults that work for your model ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7.0, # Replace with defaults that work for your model ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=20, # Replace with defaults that work for your model ) gr.Examples(examples=examples, inputs=[prompt]) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ model_id, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, scheduler, ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()