Spaces:
Sleeping
Sleeping
Add application file
Browse files- app.py +78 -0
- model.pt +3 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import streamlit as st
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from transformers import RobertaTokenizer, RobertaModel, PretrainedConfig
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
@st.cache_resource
|
| 10 |
+
def init_model():
|
| 11 |
+
model = RobertaModel(config=PretrainedConfig().from_pretrained("roberta-large-mnli"))
|
| 12 |
+
|
| 13 |
+
model.pooler = nn.Sequential(
|
| 14 |
+
nn.Linear(1024, 256),
|
| 15 |
+
nn.LayerNorm(256),
|
| 16 |
+
nn.ReLU(),
|
| 17 |
+
nn.Linear(256, 8),
|
| 18 |
+
nn.Sigmoid()
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
model_path = "model.pt"
|
| 22 |
+
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
|
| 23 |
+
model.eval()
|
| 24 |
+
return model
|
| 25 |
+
|
| 26 |
+
cats = ["Computer Science", "Economics", "Electrical Engineering",
|
| 27 |
+
"Mathematics", "Physics", "Biology", "Finance", "Statistics"]
|
| 28 |
+
|
| 29 |
+
def predict(outputs):
|
| 30 |
+
top = 0
|
| 31 |
+
temp = 100000
|
| 32 |
+
apr_probs = torch.nn.functional.softmax(torch.tensor([39253., 84., 220., 2263., 1214., 909., 66., 10661.]) / temp, dim=0)
|
| 33 |
+
probs = nn.functional.softmax(outputs / apr_probs, dim=1).tolist()[0]
|
| 34 |
+
|
| 35 |
+
top_cats = []
|
| 36 |
+
top_probs = []
|
| 37 |
+
|
| 38 |
+
first = True
|
| 39 |
+
write_cs = False
|
| 40 |
+
for prob, cat in sorted(zip(probs, cats), reverse=True):
|
| 41 |
+
if first:
|
| 42 |
+
if cat == "Computer Science":
|
| 43 |
+
write_cs = True
|
| 44 |
+
first = False
|
| 45 |
+
if top < 95:
|
| 46 |
+
percent = prob * 100
|
| 47 |
+
top += percent
|
| 48 |
+
top_cats.append(cat)
|
| 49 |
+
top_probs.append(str(round(percent, 1)))
|
| 50 |
+
res = pd.DataFrame(top_probs, index=top_cats, columns=['Percent'])
|
| 51 |
+
st.write(res)
|
| 52 |
+
if write_cs:
|
| 53 |
+
st.write("Today everything is connected with Computer Science")
|
| 54 |
+
|
| 55 |
+
tokenizer = RobertaTokenizer.from_pretrained("roberta-large-mnli")
|
| 56 |
+
model = init_model()
|
| 57 |
+
|
| 58 |
+
st.title("Article classifier")
|
| 59 |
+
st.markdown("### Title")
|
| 60 |
+
|
| 61 |
+
title = st.text_input("*Enter title (required)")
|
| 62 |
+
|
| 63 |
+
st.markdown("### Abstract")
|
| 64 |
+
|
| 65 |
+
abstract = st.text_area(" Enter abstract", height=200)
|
| 66 |
+
|
| 67 |
+
if not title:
|
| 68 |
+
st.warning("Please fill in required fields")
|
| 69 |
+
else:
|
| 70 |
+
try:
|
| 71 |
+
st.markdown("### Result")
|
| 72 |
+
encoded_input = tokenizer(title + ". " + abstract, return_tensors="pt", padding=True,
|
| 73 |
+
max_length=1024, truncation=True)
|
| 74 |
+
with torch.no_grad():
|
| 75 |
+
outputs = model(**encoded_input).pooler_output[:, 0, :]
|
| 76 |
+
predict(outputs)
|
| 77 |
+
except Exception:
|
| 78 |
+
st.error("Something went wrong. Try different text")
|
model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f9ce2a83d4d7f59e53ab917fb99ecaeb26f66a14c9f336b898f4924935af2140
|
| 3 |
+
size 1418460457
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
altair==4.0
|
| 2 |
+
pandas
|
| 3 |
+
torch
|
| 4 |
+
tokenizers
|
| 5 |
+
transformers
|