Spaces:
Runtime error
Runtime error
| import torch | |
| torch.jit.script = lambda f: f | |
| import spaces | |
| import numpy as np | |
| from diffusers import ( | |
| ControlNetModel, | |
| StableDiffusionControlNetPipeline, | |
| UniPCMultistepScheduler, | |
| ) | |
| import gradio as gr | |
| from huggingface_hub import hf_hub_download | |
| from annotator.util import resize_image, HWC3 | |
| from annotator.midas import DepthDetector | |
| from annotator.dsine_local import NormalDetector | |
| from annotator.upernet import SegmDetector | |
| controlnet_checkpoint = "kujiale-ai/controlnet-layout" | |
| # Initialize pipeline | |
| controlnet = ControlNetModel.from_pretrained( | |
| controlnet_checkpoint, | |
| subfolder="control_v1_sd15_layout_fp16", | |
| torch_dtype=torch.float16, | |
| ) | |
| pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| "stablediffusionapi/realistic-vision-v51", controlnet=controlnet, torch_dtype=torch.float16 | |
| ).to("cuda") | |
| pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
| apply_depth = DepthDetector() | |
| apply_normal = NormalDetector(hf_hub_download("camenduru/DSINE", filename="dsine.pt")) | |
| apply_segm = SegmDetector() | |
| layout_examples = [ | |
| [ | |
| "examples/layout_input.jpg", | |
| "A modern bedroom", | |
| "examples/layout_output.jpg", | |
| ], | |
| [ | |
| "examples/living_and_dining_room_input.jpg", | |
| "A modern living and dining room", | |
| "examples/living_and_dining_room_output.jpg", | |
| ], | |
| [ | |
| "examples/living_room_input.png", | |
| "A living room", | |
| "examples/living_room_output.jpg", | |
| ], | |
| [ | |
| "examples/kitchen_input.jpg", | |
| "A furnished kitchen", | |
| "examples/kitchen_output.jpg", | |
| ], | |
| ] | |
| def generate( | |
| input_image, | |
| prompt, | |
| a_prompt, | |
| n_prompt, | |
| num_samples, | |
| image_resolution, | |
| steps, | |
| strength, | |
| guidance_scale, | |
| seed, | |
| ): | |
| color_image = resize_image(HWC3(input_image), image_resolution) | |
| # set seed | |
| np.random.seed(seed) | |
| torch.manual_seed(seed) | |
| with torch.no_grad(): | |
| depth_image = apply_depth(color_image) | |
| normal_image = apply_normal(color_image) | |
| segm_image = apply_segm(color_image) | |
| # Prepare Layout Control Image | |
| depth_image = np.array(depth_image, dtype=np.float32) / 255.0 | |
| depth_image = torch.from_numpy(depth_image[:, :, None])[None].permute( | |
| 0, 3, 1, 2 | |
| ) | |
| normal_image = np.array(normal_image, dtype=np.float32) | |
| normal_image = normal_image / 127.5 - 1.0 | |
| normal_image = torch.from_numpy(normal_image)[None].permute(0, 3, 1, 2) | |
| segm_image = np.array(segm_image, dtype=np.float32) / 255.0 | |
| segm_image = torch.from_numpy(segm_image)[None].permute(0, 3, 1, 2) | |
| control_image = torch.cat([depth_image, normal_image, segm_image], dim=1) | |
| generator = torch.Generator(device="cuda").manual_seed(seed) | |
| images = pipe( | |
| prompt + a_prompt, | |
| negative_prompt=n_prompt, | |
| num_images_per_prompt=num_samples, | |
| num_inference_steps=steps, | |
| image=control_image, | |
| generator=generator, | |
| guidance_scale=float(guidance_scale), | |
| controlnet_conditioning_scale=float(strength), | |
| ).images | |
| return images | |
| block = gr.Blocks().queue() | |
| with block: | |
| with gr.Row(): | |
| gr.Markdown("## KuJiaLe Layout ControlNet Demo") | |
| with gr.Row(): | |
| gr.Markdown( | |
| "### Checkout our released model at [kujiale-ai/controlnet-layout](https://huggingface.co/kujiale-ai/controlnet-layout)" | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| input_image = gr.Image( | |
| sources="upload", type="numpy", label="Input Image", height=512 | |
| ) | |
| prompt = gr.Textbox(label="Prompt") | |
| run_button = gr.Button(value="Run") | |
| with gr.Accordion("Advanced options", open=False): | |
| num_samples = gr.Slider( | |
| label="Images", minimum=1, maximum=2, value=1, step=1 | |
| ) | |
| image_resolution = gr.Slider( | |
| label="Image Resolution", | |
| minimum=512, | |
| maximum=768, | |
| value=768, | |
| step=64, | |
| ) | |
| strength = gr.Slider( | |
| label="Control Strength", | |
| minimum=0.0, | |
| maximum=2.0, | |
| value=1.0, | |
| step=0.1, | |
| ) | |
| steps = gr.Slider( | |
| label="Steps", minimum=1, maximum=50, value=25, step=1 | |
| ) | |
| guidance_scale = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=0.1, | |
| maximum=20.0, | |
| value=7.5, | |
| step=0.1, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", minimum=-1, maximum=2147483647, value=1, step=1 | |
| ) | |
| a_prompt = gr.Textbox( | |
| label="Added Prompt", value="best quality, extremely detailed" | |
| ) | |
| n_prompt = gr.Textbox( | |
| label="Negative Prompt", | |
| value="longbody, lowres, bad anatomy, human, extra digit, fewer digits, cropped, worst quality, low quality", | |
| ) | |
| with gr.Column(): | |
| image_gallery = gr.Gallery( | |
| label="Output", | |
| show_label=False, | |
| elem_id="gallery", | |
| height=512, | |
| object_fit="contain", | |
| ) | |
| with gr.Row(): | |
| dummy_image_for_outputs = gr.Image(visible=False, label="Result") | |
| gr.Examples( | |
| fn=lambda *args: [[args[-1]], args[-2]], | |
| examples=layout_examples, | |
| inputs=[input_image, prompt, dummy_image_for_outputs], | |
| outputs=[image_gallery, prompt], | |
| run_on_click=True, | |
| examples_per_page=1024, | |
| ) | |
| ips = [ | |
| input_image, | |
| prompt, | |
| a_prompt, | |
| n_prompt, | |
| num_samples, | |
| image_resolution, | |
| steps, | |
| strength, | |
| guidance_scale, | |
| seed, | |
| ] | |
| run_button.click(fn=generate, inputs=ips, outputs=[image_gallery]) | |
| block.launch(server_name="0.0.0.0") | |