Spaces:
Running
on
Zero
Running
on
Zero
| # Reference: https://huggingface.co/spaces/FoundationVision/LlamaGen/blob/main/app.py | |
| from PIL import Image | |
| import gradio as gr | |
| from imagenet_classes import imagenet_idx2classname | |
| import torch | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| torch.backends.cudnn.allow_tf32 = True | |
| import time | |
| import demo_util | |
| from utils.train_utils import create_pretrained_tokenizer | |
| import os | |
| import spaces | |
| from huggingface_hub import hf_hub_download | |
| os.system("pip3 install -U numpy") | |
| hf_hub_download(repo_id="fun-research/TiTok", filename="maskgit-vqgan-imagenet-f16-256.bin", local_dir="./") | |
| hf_hub_download(repo_id="yucornetto/RAR", filename="rar_xl.bin", local_dir="./") | |
| # @spaces.GPU | |
| def load_model(): | |
| device = "cuda" # if torch.cuda.is_available() else "cpu" | |
| # load config | |
| rar_model_size = "rar_xl" | |
| config = demo_util.get_config("configs/training/generator/rar.yaml") | |
| config.experiment.generator_checkpoint = f"{rar_model_size}.bin" | |
| config.model.generator.hidden_size = {"rar_b": 768, "rar_l": 1024, "rar_xl": 1280, "rar_xxl": 1408}[rar_model_size] | |
| config.model.generator.num_hidden_layers = {"rar_b": 24, "rar_l": 24, "rar_xl": 32, "rar_xxl": 40}[rar_model_size] | |
| config.model.generator.num_attention_heads = 16 | |
| config.model.generator.intermediate_size = {"rar_b": 3072, "rar_l": 4096, "rar_xl": 5120, "rar_xxl": 6144}[rar_model_size] | |
| print(config) | |
| tokenizer = create_pretrained_tokenizer(config) | |
| print(tokenizer) | |
| generator = demo_util.get_rar_generator(config) | |
| print(generator) | |
| tokenizer = tokenizer.to(device) | |
| generator = generator.to(device) | |
| return tokenizer, generator | |
| tokenizer, generator = load_model() | |
| def demo_infer( | |
| guidance_scale, randomize_temperature, guidance_scale_pow, | |
| class_label, seed): | |
| device = "cuda" # if torch.cuda.is_available() else "cpu" | |
| n = 4 | |
| class_labels = [class_label for _ in range(n)] | |
| torch.manual_seed(seed) | |
| torch.cuda.manual_seed(seed) | |
| t1 = time.time() | |
| generated_image = demo_util.sample_fn( | |
| generator=generator, | |
| tokenizer=tokenizer, | |
| labels=class_labels, | |
| guidance_scale=guidance_scale, | |
| randomize_temperature=randomize_temperature, | |
| guidance_scale_pow=guidance_scale_pow, | |
| device=device | |
| ) | |
| sampling_time = time.time() - t1 | |
| print(f"generation takes about {sampling_time:.2f} seconds.") | |
| samples = [Image.fromarray(sample) for sample in generated_image] | |
| return samples | |
| with gr.Blocks() as demo: | |
| gr.Markdown("<h1 style='text-align: center'>Randomized Autoregressive Visual Generation (This demo runs with RAR-XL)</h1>") | |
| with gr.Tabs(): | |
| with gr.TabItem('Generate'): | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| i1k_class = gr.Dropdown( | |
| list(imagenet_idx2classname.values()), | |
| value='Eskimo dog, husky', | |
| type="index", label='ImageNet-1K Class' | |
| ) | |
| guidance_scale = gr.Slider(minimum=1, maximum=25, step=0.1, value=4.0, label='Classifier-free Guidance Scale') | |
| randomize_temperature = gr.Slider(minimum=0.8, maximum=1.2, step=0.01, value=1.0, label='randomize_temperature') | |
| guidance_scale_pow = gr.Slider(minimum=0.0, maximum=4.0, step=0.25, value=0.0, label='guidance_scale_pow') | |
| seed = gr.Slider(minimum=0, maximum=1000, step=1, value=42, label='Seed') | |
| button = gr.Button("Generate", variant="primary") | |
| with gr.Column(): | |
| output = gr.Gallery(label='Generated Images', | |
| columns=4, | |
| rows=1, | |
| height=256, object_fit="scale-down") | |
| button.click(demo_infer, inputs=[ | |
| guidance_scale, randomize_temperature, guidance_scale_pow, | |
| i1k_class, seed], | |
| outputs=[output]) | |
| demo.queue() | |
| demo.launch(debug=True) |