Spaces:
Running
on
Zero
Running
on
Zero
| # coding=utf-8 | |
| # Copyright 2023 The HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Adapted from https://github.com/webdataset/webdataset-imagenet/blob/main/convert-imagenet.py | |
| import argparse | |
| import os | |
| import sys | |
| import time | |
| import webdataset as wds | |
| from datasets import load_dataset | |
| def convert_imagenet_to_wds(output_dir, max_train_samples_per_shard, max_val_samples_per_shard): | |
| assert not os.path.exists(os.path.join(output_dir, "imagenet-train-000000.tar")) | |
| assert not os.path.exists(os.path.join(output_dir, "imagenet-val-000000.tar")) | |
| opat = os.path.join(output_dir, "imagenet-train-%06d.tar") | |
| output = wds.ShardWriter(opat, maxcount=max_train_samples_per_shard) | |
| dataset = load_dataset("imagenet-1k", streaming=True, split="train", use_auth_token=True) | |
| now = time.time() | |
| for i, example in enumerate(dataset): | |
| if i % max_train_samples_per_shard == 0: | |
| print(i, file=sys.stderr) | |
| img, label = example["image"], example["label"] | |
| output.write({"__key__": "%08d" % i, "jpg": img.convert("RGB"), "cls": label}) | |
| output.close() | |
| time_taken = time.time() - now | |
| print(f"Wrote {i+1} train examples in {time_taken // 3600} hours.") | |
| opat = os.path.join(output_dir, "imagenet-val-%06d.tar") | |
| output = wds.ShardWriter(opat, maxcount=max_val_samples_per_shard) | |
| dataset = load_dataset("imagenet-1k", streaming=True, split="validation", use_auth_token=True) | |
| now = time.time() | |
| for i, example in enumerate(dataset): | |
| if i % max_val_samples_per_shard == 0: | |
| print(i, file=sys.stderr) | |
| img, label = example["image"], example["label"] | |
| output.write({"__key__": "%08d" % i, "jpg": img.convert("RGB"), "cls": label}) | |
| output.close() | |
| time_taken = time.time() - now | |
| print(f"Wrote {i+1} val examples in {time_taken // 60} min.") | |
| if __name__ == "__main__": | |
| # create parase object | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--output_dir", type=str, required=True, help="Path to the output directory.") | |
| parser.add_argument("--max_train_samples_per_shard", type=int, default=4000, help="Path to the output directory.") | |
| parser.add_argument("--max_val_samples_per_shard", type=int, default=1000, help="Path to the output directory.") | |
| args = parser.parse_args() | |
| # create output directory | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| convert_imagenet_to_wds(args.output_dir, args.max_train_samples_per_shard, args.max_val_samples_per_shard) |