Spaces:
Running
Running
File size: 3,422 Bytes
664f1e2 3e34c30 664f1e2 3e34c30 664f1e2 3e34c30 664f1e2 3e34c30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
---
title: Zen Training
emoji: π§
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 4.0.0
app_file: app.py
pinned: true
license: apache-2.0
hardware: a10g-large
---
# π§ Zen Training Space
**Unified Training Platform for All Zen Models**
Train any Zen model with any dataset combination from HuggingFace. Everything runs directly from HF datasets - no local storage needed!
## π― Features
### Supported Models
**Language Models:**
- `zen-nano` (0.6B) - Edge deployment
- `zen-eco` (4B) - Balanced performance
- `zen-omni` (7B) - Multi-task
- `zen-coder` (14B) - Code generation
- `zen-next` (32B) - Frontier performance
**Vision-Language Models:**
- `zen-vl-4b` - Efficient VL with function calling
- `zen-vl-8b` - Enhanced VL capabilities
- `zen-vl-30b` - Maximum VL performance
### Supported Datasets
**Agent Training (ADP):**
- AgentTuning OS/KG/DB (~15k samples)
- Synatra (99k agent trajectories)
- Code Feedback (66k samples)
- Go Browse (27k web interactions)
**Function Calling:**
- xLAM 60k (Salesforce high-quality function calling)
**Instruction Tuning:**
- Alpaca (52k instruction samples)
## π How to Use
1. **Select Model**: Choose from language or vision-language models
2. **Select Datasets**: Check multiple datasets to combine them
3. **Configure Training**: Set epochs, batch size, learning rate, max samples
4. **Set Output Repo**: Specify HuggingFace repo for trained model
5. **Start Training**: Click the button and monitor logs
## βοΈ Training Configuration
### Recommended Settings
**4B Models (A10G - 24GB):**
- Batch Size: 1-2
- Max Samples: 10,000-30,000
- Time: 4-8 hours
- Cost: ~$3-5
**8B Models (A100 - 40GB):**
- Batch Size: 2-4
- Max Samples: 30,000-50,000
- Time: 8-12 hours
- Cost: ~$15-20
**32B Models (A100 - 80GB):**
- Batch Size: 1-2
- Max Samples: 50,000-100,000
- Time: 20-30 hours
- Cost: ~$50-80
## π Dataset Combinations
### For Agent Training:
```
ADP Synatra (80%) + xLAM (20%)
= Strong agent + quality function calling
```
### For Code Models:
```
Code Feedback (70%) + Alpaca (30%)
= Code expertise + general instruction following
```
### For VL Models:
```
ADP (all configs) + xLAM
= Complete vision-language agent training
```
## π Requirements
- HuggingFace Pro account (for GPU access)
- Write access to output repository
- HF_TOKEN secret set in Space settings
## π‘ Tips
1. **Start Small**: Test with 1,000 samples first
2. **Mix Datasets**: Combine complementary datasets for best results
3. **Monitor Logs**: Watch for OOM errors and adjust batch size
4. **Save Often**: Lower save_steps for longer training runs
## π Resources
- **Website**: https://zenlm.org
- **GitHub**: https://github.com/zenlm
- **Models**: https://huggingface.co/zenlm
- **Datasets**:
- [ADP](https://huggingface.co/datasets/neulab/agent-data-collection)
- [xLAM](https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k)
## π License
Apache 2.0
## π Citations
```bibtex
@software{zen-training-2025,
title={Zen Training: Unified Training Platform for Zen Models},
author={Zen AI Team},
year={2025},
url={https://huggingface.co/spaces/zenlm/zen-training}
}
@article{adp2024,
title={Agent Data Protocol},
author={NeuLab},
journal={arXiv preprint arXiv:2510.24702},
year={2024}
}
@dataset{xlam2024,
title={xLAM Function Calling Dataset},
author={Salesforce Research},
year={2024}
}
```
|