--- library_name: transformers base_model: - Zyphra/ZAYA1-reasoning-base --- This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from [Zyphra/ZAYA1-reasoning-base](https://huggingface.co/Zyphra/ZAYA1-reasoning-base). ### Example usage: ```python from transformers import pipeline model_id = "tiny-random/zaya1" pipe = pipeline('text-generation', model=model_id, device='cuda', dtype="bfloat16") print(pipe('Hello World!')) ``` ### Codes to create this repo: ```python import json from pathlib import Path import accelerate import torch from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoProcessor, AutoTokenizer, GenerationConfig, set_seed, ) source_model_id = "Zyphra/ZAYA1-reasoning-base" save_folder = "/tmp/tiny-random/zaya1" processor = AutoTokenizer.from_pretrained( source_model_id, trust_remote_code=True) processor.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json = json.load(f) config_json['hidden_size'] = 512 config_json['num_attention_heads'] = 4 config_json['num_key_value_heads'] = 1 config_json['num_hidden_layers'] = 2 # bug. need to first set False and then hack config_json['tie_word_embeddings'] = False config_json['cca_num_q_heads'] = [2, 0] config_json['ffn_hidden_size_list'] = [0, 32] config_json['num_query_groups_list'] = [1, 0] config_json['zaya_layers'] = ['a', 16] config_json['zaya_mlp_expansion'] = [0, 8] with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) torch.set_default_dtype(torch.bfloat16) model = AutoModelForCausalLM.from_config(config) model.lm_head = None torch.set_default_dtype(torch.float32) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) set_seed(42) model = model.cpu() with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.1) print(name, p.shape) model.save_pretrained(save_folder) with open(f"{save_folder}/config.json", 'r', encoding='utf-8') as f: config_json = json.load(f) config_json['tie_word_embeddings'] = True with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) ``` ### Printing the model: ```text ZayaForCausalLM( (model): ZayaModel( (embed_tokens): Embedding(262272, 512, padding_idx=0) (layers): ModuleList( (0): ZayaDecoderATTLayer( (self_attn): ZayaSdpaAttention( (o_proj): Linear(in_features=256, out_features=512, bias=False) (qkv): CCA( (linear_q): Linear(in_features=512, out_features=256, bias=False) (linear_k): Linear(in_features=512, out_features=128, bias=False) (val_proj1): Linear(in_features=512, out_features=64, bias=False) (val_proj2): Linear(in_features=512, out_features=64, bias=False) (conv_qk): Sequential( (0): Conv1d(384, 384, kernel_size=(2,), stride=(1,), groups=384) (1): Conv1d(384, 384, kernel_size=(2,), stride=(1,), groups=3) ) ) ) (input_norm): ZayaRMSNorm((512,), eps=1e-05) (res_scale): ResidualScaling() ) (1): ZayaDecoderMLPLayer( (zaya_block): ZayaBlock( (router): ZayaRouter( (down_proj): Linear(in_features=512, out_features=8, bias=True) (rmsnorm_eda): ZayaRMSNorm((8,), eps=1e-06) (non_linearity): GELU(approximate='none') (router_mlp): Sequential( (0): Linear(in_features=8, out_features=8, bias=True) (1): GELU(approximate='none') (2): Linear(in_features=8, out_features=8, bias=True) (3): GELU(approximate='none') (4): Linear(in_features=8, out_features=17, bias=False) ) ) (experts): SequentialMLP( (local_experts): ModuleList( (0-15): 16 x MLP( (linear_fc1): Linear(in_features=512, out_features=32, bias=False) (linear_fc2): Linear(in_features=16, out_features=512, bias=False) ) ) ) ) (input_norm): ZayaRMSNorm((512,), eps=1e-05) (res_scale): ResidualScaling() ) ) (res_scale): ResidualScaling() (final_norm): ZayaRMSNorm((512,), eps=1e-05) (rotary_emb): ZayaRotaryEmbedding() ) (lm_head): None ) ```