QRCode_det
This version of QRCode detetion model has been converted to run on the Axera NPU using w8a16 quantization.
This model has been optimized with the following LoRA:
Compatible with Pulsar2 version: 5.1
Convert tools links:
For those who are interested in model conversion, you can try to export axmodel through
The original repo, which you can get the detail of guide
The repo of AXera Platform,which you can learn how to compile the C++ demo
Support Platform
- AX650
- AX630C
- AX637
| Chips | model | cost |
|---|---|---|
| yolov5n | 1.73 ms | |
| yolov8n | 3.64 ms | |
| yolov9t | 4.75 ms | |
| AX650 | yolov10n | 3.67 ms |
| yolo11n | 3.42 ms | |
| yolo12n | 6.87 ms | |
| NanodetPlus | 2.16 ms | |
| DEIMv2_femto(u16) | 3.76 ms | |
| yolov5n | 5.79 ms | |
| yolov8n | 9.26 ms | |
| yolov9t | 11.6 ms | |
| AX630C | yolov10n | 9.71 ms |
| yolo11n | 9.65 ms | |
| yolo12n | 20.24 ms | |
| NanodetPlus | 5.93 ms | |
| yolov5n | 2.11 ms | |
| yolov8n | 4.04 ms | |
| yolov9t | 4.91 ms | |
| AX637 | yolov10n | 4.05 ms |
| yolo11n | 3.84 ms | |
| yolo12n | 6.40 ms | |
| NanodetPlus | 2.38 ms |
How to use
Download all files from this repository to the device
.
βββ config.json
βββ CPP
β βββ ax_deimv2_qrcode_batch
β βββ ax_nanodetplus_qrcode_batch
β βββ ax_yolov5_qrcode_batch
β βββ ax_yolov8_qrcode_batch
βββ cpp_result.png
βββ images
β βββ qrcode_01.jpg
β βββ qrcode_02.jpg
β βββ qrcode_03.jpg
| βββ ...
β βββ qrcode_55.jpg
βββ model
β βββ AX620E
β β βββ nanodet-plus-m_630_npu1.axmodel
β β βββ yolo11n_630_npu1.axmodel
β β βββ yolo12n_630_npu1.axmodel
β β βββ yolov10n_630_npu1.axmodel
β β βββ yolov5n_630_npu1.axmodel
β β βββ yolov8n_630_npu1.axmodel
β β βββ yolov9t_630_npu1.axmodel
β βββ AX637
β β βββ nanodet-plus-m_637_npu1.axmodel
β β βββ yolo11n_637_npu1.axmodel
β β βββ yolo12n_637_npu1.axmodel
β β βββ yolov10n_637_npu1.axmodel
β β βββ yolov5n_637_npu1.axmodel
β β βββ yolov8n_637_npu1.axmodel
β β βββ yolov9t_637_npu1.axmodel
β βββ AX650
β βββ deimv2_femto_650_npu1_u16.axmodel
β βββ nanodet-plus-m_650_npu1.axmodel
β βββ yolo11n_650_npu1.axmodel
β βββ yolo12n_650_npu1.axmodel
β βββ yolov10n_650_npu1.axmodel
β βββ yolov5n_650_npu1.axmodel
β βββ yolov8n_650_npu1.axmodel
β βββ yolov9t_650_npu1.axmodel
βββ py_result.png
βββ python
β βββ QRCode_axmodel_infer_DEIMv2.py
β βββ QRCode_axmodel_infer_Nanodet.py
β βββ QRCode_axmodel_infer_v5.py
β βββ QRCode_axmodel_infer_v8.py
β βββ QRCode_onnx_infer_DEIMv2.py
β βββ QRCode_onnx_infer_Nanodet.py
β βββ QRCode_onnx_infer_v5.py
β βββ QRCode_onnx_infer_v8.py
β βββ requirements.txt
βββ README.md
Inference
Input Data:
|-- images
| `-- qrcode_01.jpg
| `-- qrcode_02.jpg
| `-- qrcode_03.jpg
| `-- qrcode_04.jpg...
Inference with AX650 Host, such as M4N-Dock(η±θ―ζ΄ΎPro)
Python
run with python3 QRCode_axmodel_infer_xxx.py
root@ax650:~/QRCode# python3 QRCode_axmodel_infer_DEIMv2.py
[INFO] Available providers: ['AxEngineExecutionProvider']
[INFO] Using provider: AxEngineExecutionProvider
[INFO] Chip type: ChipType.MC50
[INFO] VNPU type: VNPUType.DISABLED
[INFO] Engine version: 2.12.0s
[INFO] Model type: 2 (triple core)
[INFO] Compiler version: 4.2 b98901c3
θ―ε«ζεοΌ
εΎη ./qrcode_test/qrcode_01.jpg ε€ηθζΆ: 0.2165 η§
θ―ε«ζεοΌ
εΎη ./qrcode_test/qrcode_02.jpg ε€ηθζΆ: 0.1540 η§
θ―ε«ζεοΌ
εΎη ./qrcode_test/qrcode_03.jpg ε€ηθζΆ: 0.1456 η§
θ―ε«ζεοΌ
εΎη ./qrcode_test/qrcode_05.jpg ε€ηθζΆ: 0.1449 η§
C++
./ax_xxx_qrcode_batch -m xxx_npu1.axmodel -i images/
- Downloads last month
- 19

