QRCode_det

This version of QRCode detetion model has been converted to run on the Axera NPU using w8a16 quantization.

This model has been optimized with the following LoRA:

Compatible with Pulsar2 version: 5.1

Convert tools links:

For those who are interested in model conversion, you can try to export axmodel through

Support Platform

Chips model cost
yolov5n 1.73 ms
yolov8n 3.64 ms
yolov9t 4.75 ms
AX650 yolov10n 3.67 ms
yolo11n 3.42 ms
yolo12n 6.87 ms
NanodetPlus 2.16 ms
DEIMv2_femto(u16) 3.76 ms
yolov5n 5.79 ms
yolov8n 9.26 ms
yolov9t 11.6 ms
AX630C yolov10n 9.71 ms
yolo11n 9.65 ms
yolo12n 20.24 ms
NanodetPlus 5.93 ms
yolov5n 2.11 ms
yolov8n 4.04 ms
yolov9t 4.91 ms
AX637 yolov10n 4.05 ms
yolo11n 3.84 ms
yolo12n 6.40 ms
NanodetPlus 2.38 ms

How to use

Download all files from this repository to the device


.
β”œβ”€β”€ config.json
β”œβ”€β”€ CPP
β”‚   β”œβ”€β”€ ax_deimv2_qrcode_batch
β”‚   β”œβ”€β”€ ax_nanodetplus_qrcode_batch
β”‚   β”œβ”€β”€ ax_yolov5_qrcode_batch
β”‚   └── ax_yolov8_qrcode_batch
β”œβ”€β”€ cpp_result.png
β”œβ”€β”€ images
β”‚   β”œβ”€β”€ qrcode_01.jpg
β”‚   β”œβ”€β”€ qrcode_02.jpg
β”‚   β”œβ”€β”€ qrcode_03.jpg
|   β”œβ”€β”€ ...
β”‚   └── qrcode_55.jpg
β”œβ”€β”€ model
β”‚   β”œβ”€β”€ AX620E
β”‚   β”‚   β”œβ”€β”€ nanodet-plus-m_630_npu1.axmodel
β”‚   β”‚   β”œβ”€β”€ yolo11n_630_npu1.axmodel
β”‚   β”‚   β”œβ”€β”€ yolo12n_630_npu1.axmodel
β”‚   β”‚   β”œβ”€β”€ yolov10n_630_npu1.axmodel
β”‚   β”‚   β”œβ”€β”€ yolov5n_630_npu1.axmodel
β”‚   β”‚   β”œβ”€β”€ yolov8n_630_npu1.axmodel
β”‚   β”‚   └── yolov9t_630_npu1.axmodel
β”‚   β”œβ”€β”€ AX637
β”‚   β”‚   β”œβ”€β”€ nanodet-plus-m_637_npu1.axmodel
β”‚   β”‚   β”œβ”€β”€ yolo11n_637_npu1.axmodel
β”‚   β”‚   β”œβ”€β”€ yolo12n_637_npu1.axmodel
β”‚   β”‚   β”œβ”€β”€ yolov10n_637_npu1.axmodel
β”‚   β”‚   β”œβ”€β”€ yolov5n_637_npu1.axmodel
β”‚   β”‚   β”œβ”€β”€ yolov8n_637_npu1.axmodel
β”‚   β”‚   └── yolov9t_637_npu1.axmodel
β”‚   └── AX650
β”‚       β”œβ”€β”€ deimv2_femto_650_npu1_u16.axmodel
β”‚       β”œβ”€β”€ nanodet-plus-m_650_npu1.axmodel
β”‚       β”œβ”€β”€ yolo11n_650_npu1.axmodel
β”‚       β”œβ”€β”€ yolo12n_650_npu1.axmodel
β”‚       β”œβ”€β”€ yolov10n_650_npu1.axmodel
β”‚       β”œβ”€β”€ yolov5n_650_npu1.axmodel
β”‚       β”œβ”€β”€ yolov8n_650_npu1.axmodel
β”‚       └── yolov9t_650_npu1.axmodel
β”œβ”€β”€ py_result.png
β”œβ”€β”€ python
β”‚   β”œβ”€β”€ QRCode_axmodel_infer_DEIMv2.py
β”‚   β”œβ”€β”€ QRCode_axmodel_infer_Nanodet.py
β”‚   β”œβ”€β”€ QRCode_axmodel_infer_v5.py
β”‚   β”œβ”€β”€ QRCode_axmodel_infer_v8.py
β”‚   β”œβ”€β”€ QRCode_onnx_infer_DEIMv2.py
β”‚   β”œβ”€β”€ QRCode_onnx_infer_Nanodet.py
β”‚   β”œβ”€β”€ QRCode_onnx_infer_v5.py
β”‚   β”œβ”€β”€ QRCode_onnx_infer_v8.py
β”‚   └── requirements.txt
└── README.md

Inference

Input Data:

|-- images
|   `-- qrcode_01.jpg
|   `-- qrcode_02.jpg
|   `-- qrcode_03.jpg
|   `-- qrcode_04.jpg...

Inference with AX650 Host, such as M4N-Dock(爱芯派Pro)

Python

run with python3 QRCode_axmodel_infer_xxx.py

root@ax650:~/QRCode# python3 QRCode_axmodel_infer_DEIMv2.py
[INFO] Available providers:  ['AxEngineExecutionProvider']
[INFO] Using provider: AxEngineExecutionProvider
[INFO] Chip type: ChipType.MC50
[INFO] VNPU type: VNPUType.DISABLED
[INFO] Engine version: 2.12.0s
[INFO] Model type: 2 (triple core)
[INFO] Compiler version: 4.2 b98901c3
θ―†εˆ«ζˆεŠŸοΌ
图片 ./qrcode_test/qrcode_01.jpg 倄理耗既: 0.2165 η§’
θ―†εˆ«ζˆεŠŸοΌ
图片 ./qrcode_test/qrcode_02.jpg 倄理耗既: 0.1540 η§’
θ―†εˆ«ζˆεŠŸοΌ
图片 ./qrcode_test/qrcode_03.jpg 倄理耗既: 0.1456 η§’
θ―†εˆ«ζˆεŠŸοΌ
图片 ./qrcode_test/qrcode_05.jpg 倄理耗既: 0.1449 η§’

Output: alt text

C++
./ax_xxx_qrcode_batch -m xxx_npu1.axmodel -i images/

Output: alt text

Downloads last month
19
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support