bert-base-multilingual-cased-eng
This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1079
- Accuracy: 0.7969
- F1 Binary: 0.6640
- Precision: 0.5846
- Recall: 0.7684
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 41
- num_epochs: 4
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Binary | Precision | Recall |
|---|---|---|---|---|---|---|---|
| No log | 1.0 | 208 | 0.1112 | 0.6949 | 0.5591 | 0.4490 | 0.7408 |
| No log | 2.0 | 416 | 0.0849 | 0.7473 | 0.6230 | 0.5103 | 0.7995 |
| 0.0887 | 3.0 | 624 | 0.0882 | 0.7858 | 0.6590 | 0.5639 | 0.7926 |
| 0.0887 | 4.0 | 832 | 0.1079 | 0.7969 | 0.6640 | 0.5846 | 0.7684 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 10
Model tree for FrinzTheCoder/bert-base-multilingual-cased-eng
Base model
google-bert/bert-base-multilingual-cased