π LFM2.5-Audio
Collection
2 items
β’
Updated
β’
10
Find more details in the original model card: https://huggingface.co/LiquidAI/LFM2.5-Audio-1.5B
runners folder contains runners for various architectures including
Set env variables.
export CKPT=/path/to/LFM2.5-Audio-1.5B-GGUF
export INPUT_WAV=/path/to/input.wav
export OUTPUT_WAV=/path/to/output.wav
./llama-liquid-audio-cli -m $CKPT/LFM2.5-Audio-1.5B-Q4_0.gguf -mm $CKPT/mmproj-LFM2.5-Audio-1.5B-Q4_0.gguf -mv $CKPT/vocoder-LFM2.5-Audio-1.5B-Q4_0.gguf --tts-speaker-file $CKPT/tokenizer-LFM2.5-Audio-1.5B-Q4_0.gguf -sys "Perform ASR." --audio $INPUT_WAV
./llama-liquid-audio-cli -m $CKPT/LFM2.5-Audio-1.5B-Q4_0.gguf -mm $CKPT/mmproj-LFM2.5-Audio-1.5B-Q4_0.gguf -mv $CKPT/vocoder-LFM2.5-Audio-1.5B-Q4_0.gguf --tts-speaker-file $CKPT/tokenizer-LFM2.5-Audio-1.5B-Q4_0.gguf -sys "Perform TTS." -p "Hi, how are you?" --output $OUTPUT_WAV
./llama-liquid-audio-cli -m $CKPT/LFM2.5-Audio-1.5B-Q4_0.gguf -mm $CKPT/mmproj-LFM2.5-Audio-1.5B-Q4_0.gguf -mv $CKPT/vocoder-LFM2.5-Audio-1.5B-Q4_0.gguf --tts-speaker-file $CKPT/tokenizer-LFM2.5-Audio-1.5B-Q4_0.gguf -sys "Respond with interleaved text and audio." --audio $INPUT_WAV --output $OUTPUT_WAV
Start server
export CKPT=/path/to/LFM2.5-Audio-1.5B-GGUF
./llama-liquid-audio-server -m $CKPT/LFM2.5-Audio-1.5B-Q4_0.gguf -mm $CKPT/mmproj-LFM2.5-Audio-1.5B-Q4_0.gguf -mv $CKPT/vocoder-LFM2.5-Audio-1.5B-Q4_0.gguf --tts-speaker-file $CKPT/tokenizer-LFM2.5-Audio-1.5B-Q4_0.gguf
Use liquid_audio_chat.py script to communicate with the server.
uv run liquid_audio_chat.py
Runners are built from https://github.com/ggml-org/llama.cpp/pull/18641. It's WIP and will take time to land in upstream.
4-bit
8-bit
16-bit