|
|
from original import * |
|
|
import shutil, glob |
|
|
from easyfuncs import download_from_url, CachedModels |
|
|
import os |
|
|
|
|
|
os.makedirs("dataset", exist_ok=True) |
|
|
model_library = CachedModels() |
|
|
|
|
|
|
|
|
def get_audio_paths(path): |
|
|
if not os.path.exists(path): |
|
|
return [] |
|
|
return [os.path.abspath(os.path.join(path, f)) for f in os.listdir(path) if os.path.splitext(f)[1].lower() in ('.mp3', '.wav', '.flac', '.ogg')] |
|
|
|
|
|
with gr.Blocks(title="🔊", theme=gr.themes.Base(primary_hue="blue", neutral_hue="zinc")) as app: |
|
|
with gr.Tabs(): |
|
|
with gr.Tab("Inference"): |
|
|
with gr.Row(): |
|
|
|
|
|
initial_model_choices = sorted(names) if names else [] |
|
|
voice_model = gr.Dropdown( |
|
|
label="Model Voice", |
|
|
choices=initial_model_choices, |
|
|
value=initial_model_choices[0] if initial_model_choices else None, |
|
|
interactive=True |
|
|
) |
|
|
refresh_button = gr.Button("Refresh", variant="primary") |
|
|
spk_item = gr.Slider( |
|
|
minimum=0, |
|
|
maximum=2333, |
|
|
step=1, |
|
|
label="Speaker ID", |
|
|
value=0, |
|
|
visible=False, |
|
|
interactive=True, |
|
|
) |
|
|
vc_transform0 = gr.Number( |
|
|
label="Pitch", |
|
|
value=0 |
|
|
) |
|
|
but0 = gr.Button(value="Convert", variant="primary") |
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
with gr.Row(): |
|
|
dropbox = gr.Audio(label="Drop your audio here & hit the Reload button.", type="filepath") |
|
|
with gr.Row(): |
|
|
record_button = gr.Audio(sources=["microphone"], label="OR Record audio.", type="filepath") |
|
|
with gr.Row(): |
|
|
input_audio0 = gr.Dropdown( |
|
|
label="Input Path", |
|
|
value=None, |
|
|
choices=[], |
|
|
allow_custom_value=True |
|
|
) |
|
|
with gr.Row(): |
|
|
audio_player = gr.Audio() |
|
|
|
|
|
def update_audio_player(path): |
|
|
if path and os.path.exists(path): |
|
|
return path |
|
|
return None |
|
|
|
|
|
input_audio0.change( |
|
|
fn=update_audio_player, |
|
|
inputs=[input_audio0], |
|
|
outputs=[audio_player] |
|
|
) |
|
|
|
|
|
def handle_record(audio): |
|
|
if audio: |
|
|
return audio |
|
|
return None |
|
|
|
|
|
record_button.change( |
|
|
fn=handle_record, |
|
|
inputs=[record_button], |
|
|
outputs=[input_audio0] |
|
|
) |
|
|
|
|
|
def handle_upload(audio): |
|
|
if audio: |
|
|
return audio |
|
|
return None |
|
|
|
|
|
dropbox.change( |
|
|
fn=handle_upload, |
|
|
inputs=[dropbox], |
|
|
outputs=[input_audio0] |
|
|
) |
|
|
|
|
|
with gr.Column(): |
|
|
with gr.Accordion("Change Index", open=False): |
|
|
file_index2 = gr.Dropdown( |
|
|
label="Change Index", |
|
|
choices=[], |
|
|
interactive=True, |
|
|
value=None |
|
|
) |
|
|
index_rate1 = gr.Slider( |
|
|
minimum=0, |
|
|
maximum=1, |
|
|
label="Index Strength", |
|
|
value=0.5, |
|
|
interactive=True, |
|
|
) |
|
|
vc_output2 = gr.Audio(label="Output") |
|
|
with gr.Accordion("General Settings", open=False): |
|
|
f0method0 = gr.Radio( |
|
|
label="Method", |
|
|
choices=["pm", "harvest", "crepe", "rmvpe"] |
|
|
if config.dml == False |
|
|
else ["pm", "harvest", "rmvpe"], |
|
|
value="rmvpe", |
|
|
interactive=True, |
|
|
) |
|
|
filter_radius0 = gr.Slider( |
|
|
minimum=0, |
|
|
maximum=7, |
|
|
label="Breathiness Reduction (Harvest only)", |
|
|
value=3, |
|
|
step=1, |
|
|
interactive=True, |
|
|
) |
|
|
resample_sr0 = gr.Slider( |
|
|
minimum=0, |
|
|
maximum=48000, |
|
|
label="Resample", |
|
|
value=0, |
|
|
step=1, |
|
|
interactive=True, |
|
|
visible=False |
|
|
) |
|
|
rms_mix_rate0 = gr.Slider( |
|
|
minimum=0, |
|
|
maximum=1, |
|
|
label="Volume Normalization", |
|
|
value=0, |
|
|
interactive=True, |
|
|
) |
|
|
protect0 = gr.Slider( |
|
|
minimum=0, |
|
|
maximum=0.5, |
|
|
label="Breathiness Protection (0 is enabled, 0.5 is disabled)", |
|
|
value=0.33, |
|
|
step=0.01, |
|
|
interactive=True, |
|
|
) |
|
|
|
|
|
file_index1 = gr.Textbox( |
|
|
label="Index Path", |
|
|
interactive=True, |
|
|
visible=False |
|
|
) |
|
|
|
|
|
|
|
|
def refresh_ui(): |
|
|
|
|
|
try: |
|
|
model_result, index_result = change_choices() |
|
|
model_choices = model_result["choices"] |
|
|
index_choices = index_result["choices"] |
|
|
except Exception as e: |
|
|
print(f"Error in change_choices: {e}") |
|
|
model_choices = [] |
|
|
index_choices = [] |
|
|
|
|
|
audio_paths = get_audio_paths('audios') |
|
|
|
|
|
|
|
|
current_model = voice_model.value |
|
|
current_index = file_index2.value |
|
|
current_audio = input_audio0.value |
|
|
|
|
|
|
|
|
default_model = (current_model if current_model in model_choices |
|
|
else (model_choices[0] if model_choices else None)) |
|
|
default_index = (current_index if current_index in index_choices |
|
|
else (index_choices[0] if index_choices else None)) |
|
|
default_audio = (current_audio if current_audio in audio_paths |
|
|
else (audio_paths[0] if audio_paths else None)) |
|
|
|
|
|
return ( |
|
|
gr.update(choices=model_choices, value=default_model), |
|
|
gr.update(choices=index_choices, value=default_index), |
|
|
gr.update(choices=audio_paths, value=default_audio) |
|
|
) |
|
|
|
|
|
refresh_button.click( |
|
|
fn=refresh_ui, |
|
|
inputs=[], |
|
|
outputs=[voice_model, file_index2, input_audio0], |
|
|
api_name="infer_refresh", |
|
|
) |
|
|
|
|
|
with gr.Row(): |
|
|
f0_file = gr.File(label="F0 Path", visible=False) |
|
|
with gr.Row(): |
|
|
vc_output1 = gr.Textbox(label="Information", placeholder="Welcome!", visible=False) |
|
|
but0.click( |
|
|
vc.vc_single, |
|
|
[ |
|
|
spk_item, |
|
|
input_audio0, |
|
|
vc_transform0, |
|
|
f0_file, |
|
|
f0method0, |
|
|
file_index1, |
|
|
file_index2, |
|
|
index_rate1, |
|
|
filter_radius0, |
|
|
resample_sr0, |
|
|
rms_mix_rate0, |
|
|
protect0, |
|
|
], |
|
|
[vc_output1, vc_output2], |
|
|
api_name="infer_convert", |
|
|
) |
|
|
voice_model.change( |
|
|
fn=vc.get_vc, |
|
|
inputs=[voice_model, protect0, protect0], |
|
|
outputs=[spk_item, protect0, protect0, file_index2, file_index2], |
|
|
api_name="infer_change_voice", |
|
|
) |
|
|
|
|
|
with gr.Tab("Download Models"): |
|
|
with gr.Row(): |
|
|
url_input = gr.Textbox(label="URL to model", value="", placeholder="https://...", scale=6) |
|
|
name_output = gr.Textbox(label="Save as", value="", placeholder="MyModel", scale=2) |
|
|
url_download = gr.Button(value="Download Model", scale=2) |
|
|
url_download.click( |
|
|
inputs=[url_input, name_output], |
|
|
outputs=[url_input], |
|
|
fn=download_from_url, |
|
|
) |
|
|
with gr.Row(): |
|
|
model_browser = gr.Dropdown(choices=list(model_library.models.keys()), label="OR Search Models (Quality UNKNOWN)", scale=5) |
|
|
download_from_browser = gr.Button(value="Get", scale=2) |
|
|
download_from_browser.click( |
|
|
inputs=[model_browser], |
|
|
outputs=[model_browser], |
|
|
fn=lambda model: download_from_url(model_library.models[model], model), |
|
|
) |
|
|
|
|
|
with gr.Tab("Train"): |
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
training_name = gr.Textbox(label="Name your model", value="My-Voice", placeholder="My-Voice") |
|
|
np7 = gr.Slider( |
|
|
minimum=0, |
|
|
maximum=config.n_cpu, |
|
|
step=1, |
|
|
label="Number of CPU processes used to extract pitch features", |
|
|
value=int(np.ceil(config.n_cpu / 1.5)), |
|
|
interactive=True, |
|
|
) |
|
|
sr2 = gr.Radio( |
|
|
label="Sampling Rate", |
|
|
choices=["40k", "32k"], |
|
|
value="32k", |
|
|
interactive=True, |
|
|
visible=False |
|
|
) |
|
|
if_f0_3 = gr.Radio( |
|
|
label="Will your model be used for singing? If not, you can ignore this.", |
|
|
choices=[True, False], |
|
|
value=True, |
|
|
interactive=True, |
|
|
visible=False |
|
|
) |
|
|
version19 = gr.Radio( |
|
|
label="Version", |
|
|
choices=["v1", "v2"], |
|
|
value="v2", |
|
|
interactive=True, |
|
|
visible=False, |
|
|
) |
|
|
dataset_folder = gr.Textbox( |
|
|
label="dataset folder", value='dataset' |
|
|
) |
|
|
easy_uploader = gr.File(label="Drop your audio files here", file_count="multiple", file_types=["audio"]) |
|
|
but1 = gr.Button("1. Process", variant="primary") |
|
|
info1 = gr.Textbox(label="Information", value="", visible=True) |
|
|
|
|
|
def handle_file_upload(files, folder): |
|
|
if not folder or folder.strip() == "": |
|
|
gr.Warning('Please enter a folder name for your dataset') |
|
|
return [] |
|
|
if not os.path.exists(folder): |
|
|
os.makedirs(folder, exist_ok=True) |
|
|
|
|
|
saved_files = [] |
|
|
for file_obj in files: |
|
|
if hasattr(file_obj, 'name'): |
|
|
filename = os.path.basename(file_obj.name) |
|
|
dest_path = os.path.join(folder, filename) |
|
|
shutil.copy2(file_obj.name, dest_path) |
|
|
saved_files.append(dest_path) |
|
|
elif isinstance(file_obj, str): |
|
|
filename = os.path.basename(file_obj) |
|
|
dest_path = os.path.join(folder, filename) |
|
|
shutil.copy2(file_obj, dest_path) |
|
|
saved_files.append(dest_path) |
|
|
return [] |
|
|
|
|
|
easy_uploader.upload( |
|
|
fn=handle_file_upload, |
|
|
inputs=[easy_uploader, dataset_folder], |
|
|
outputs=[] |
|
|
) |
|
|
|
|
|
gpus6 = gr.Textbox( |
|
|
label="Enter the GPU numbers to use separated by -, (e.g. 0-1-2)", |
|
|
value=gpus, |
|
|
interactive=True, |
|
|
visible=F0GPUVisible, |
|
|
) |
|
|
gpu_info9 = gr.Textbox( |
|
|
label="GPU Info", value=gpu_info, visible=F0GPUVisible |
|
|
) |
|
|
spk_id5 = gr.Slider( |
|
|
minimum=0, |
|
|
maximum=4, |
|
|
step=1, |
|
|
label="Speaker ID", |
|
|
value=0, |
|
|
interactive=True, |
|
|
visible=False |
|
|
) |
|
|
but1.click( |
|
|
preprocess_dataset, |
|
|
[dataset_folder, training_name, sr2, np7], |
|
|
[info1], |
|
|
api_name="train_preprocess", |
|
|
) |
|
|
|
|
|
with gr.Column(): |
|
|
f0method8 = gr.Radio( |
|
|
label="F0 extraction method", |
|
|
choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"], |
|
|
value="rmvpe_gpu", |
|
|
interactive=True, |
|
|
) |
|
|
gpus_rmvpe = gr.Textbox( |
|
|
label="GPU numbers to use separated by -, (e.g. 0-1-2)", |
|
|
value="%s-%s" % (gpus, gpus), |
|
|
interactive=True, |
|
|
visible=F0GPUVisible, |
|
|
) |
|
|
but2 = gr.Button("2. Extract Features", variant="primary") |
|
|
info2 = gr.Textbox(label="Information", value="", max_lines=8) |
|
|
f0method8.change( |
|
|
fn=change_f0_method, |
|
|
inputs=[f0method8], |
|
|
outputs=[gpus_rmvpe], |
|
|
) |
|
|
but2.click( |
|
|
extract_f0_feature, |
|
|
[ |
|
|
gpus6, |
|
|
np7, |
|
|
f0method8, |
|
|
if_f0_3, |
|
|
training_name, |
|
|
version19, |
|
|
gpus_rmvpe, |
|
|
], |
|
|
[info2], |
|
|
api_name="train_extract_f0_feature", |
|
|
) |
|
|
|
|
|
with gr.Column(): |
|
|
total_epoch11 = gr.Slider( |
|
|
minimum=2, |
|
|
maximum=1000, |
|
|
step=1, |
|
|
label="Epochs (more epochs may improve quality but takes longer)", |
|
|
value=150, |
|
|
interactive=True, |
|
|
) |
|
|
but4 = gr.Button("3. Train Index", variant="primary") |
|
|
but3 = gr.Button("4. Train Model", variant="primary") |
|
|
info3 = gr.Textbox(label="Information", value="", max_lines=10) |
|
|
with gr.Accordion(label="General Settings", open=False): |
|
|
gpus16 = gr.Textbox( |
|
|
label="GPUs separated by -, (e.g. 0-1-2)", |
|
|
value="0", |
|
|
interactive=True, |
|
|
visible=True |
|
|
) |
|
|
save_epoch10 = gr.Slider( |
|
|
minimum=1, |
|
|
maximum=50, |
|
|
step=1, |
|
|
label="Weight Saving Frequency", |
|
|
value=25, |
|
|
interactive=True, |
|
|
) |
|
|
batch_size12 = gr.Slider( |
|
|
minimum=1, |
|
|
maximum=40, |
|
|
step=1, |
|
|
label="Batch Size", |
|
|
value=default_batch_size, |
|
|
interactive=True, |
|
|
) |
|
|
if_save_latest13 = gr.Radio( |
|
|
label="Only save the latest model", |
|
|
choices=["yes", "no"], |
|
|
value="yes", |
|
|
interactive=True, |
|
|
visible=False |
|
|
) |
|
|
if_cache_gpu17 = gr.Radio( |
|
|
label="If your dataset is UNDER 10 minutes, cache it to train faster", |
|
|
choices=["yes", "no"], |
|
|
value="no", |
|
|
interactive=True, |
|
|
) |
|
|
if_save_every_weights18 = gr.Radio( |
|
|
label="Save small model at every save point", |
|
|
choices=["yes", "no"], |
|
|
value="yes", |
|
|
interactive=True, |
|
|
) |
|
|
with gr.Accordion(label="Change pretrains", open=False): |
|
|
def get_pretrained_choices(sr, if_f0, version): |
|
|
|
|
|
if version == "v1": |
|
|
path_str = "" |
|
|
else: |
|
|
path_str = "_v2" |
|
|
|
|
|
if if_f0: |
|
|
f0_str = "f0" |
|
|
else: |
|
|
f0_str = "" |
|
|
|
|
|
pretrained_G, pretrained_D = get_pretrained_models(path_str, f0_str, sr) |
|
|
return [pretrained_G] if pretrained_G else [], [pretrained_D] if pretrained_D else [] |
|
|
|
|
|
pretrained_G14 = gr.Dropdown( |
|
|
label="pretrained G", |
|
|
choices=[], |
|
|
value="", |
|
|
interactive=True, |
|
|
visible=True |
|
|
) |
|
|
pretrained_D15 = gr.Dropdown( |
|
|
label="pretrained D", |
|
|
choices=[], |
|
|
value="", |
|
|
visible=True, |
|
|
interactive=True |
|
|
) |
|
|
|
|
|
def update_pretrained_dropdowns(sr, if_f0, ver): |
|
|
sr_str = sr if isinstance(sr, str) else str(sr) |
|
|
g_choices, d_choices = get_pretrained_choices(sr_str, if_f0, ver) |
|
|
return ( |
|
|
gr.update(choices=g_choices, value=g_choices[0] if g_choices else ""), |
|
|
gr.update(choices=d_choices, value=d_choices[0] if d_choices else "") |
|
|
) |
|
|
|
|
|
|
|
|
sr2.change(fn=update_pretrained_dropdowns, inputs=[sr2, if_f0_3, version19], outputs=[pretrained_G14, pretrained_D15]) |
|
|
version19.change(fn=update_pretrained_dropdowns, inputs=[sr2, if_f0_3, version19], outputs=[pretrained_G14, pretrained_D15]) |
|
|
if_f0_3.change(fn=update_pretrained_dropdowns, inputs=[sr2, if_f0_3, version19], outputs=[pretrained_G14, pretrained_D15]) |
|
|
|
|
|
with gr.Row(): |
|
|
download_model = gr.Button('5.Download Model') |
|
|
with gr.Row(): |
|
|
model_files = gr.File(label='Your Model and Index file can be downloaded here:') |
|
|
|
|
|
def download_model_files(name): |
|
|
if not name or name.strip() == "": |
|
|
return [], "Please enter a model name" |
|
|
|
|
|
model_path = f'logs/{name}' |
|
|
index_pattern = f'logs/{name}/added_*.index' |
|
|
|
|
|
files = [] |
|
|
if os.path.exists(model_path): |
|
|
files.extend([os.path.join(model_path, f) for f in os.listdir(model_path) if f.endswith('.pth')]) |
|
|
files.extend(glob.glob(index_pattern)) |
|
|
|
|
|
return files, f"Found {len(files)} files" |
|
|
|
|
|
download_model.click( |
|
|
fn=download_model_files, |
|
|
inputs=[training_name], |
|
|
outputs=[model_files, info3] |
|
|
) |
|
|
|
|
|
if_f0_3.change( |
|
|
fn=change_f0, |
|
|
inputs=[if_f0_3, sr2, version19], |
|
|
outputs=[f0method8, pretrained_G14, pretrained_D15], |
|
|
) |
|
|
|
|
|
but5 = gr.Button("1 Click Training", variant="primary", visible=False) |
|
|
but3.click( |
|
|
click_train, |
|
|
[ |
|
|
training_name, |
|
|
sr2, |
|
|
if_f0_3, |
|
|
spk_id5, |
|
|
save_epoch10, |
|
|
total_epoch11, |
|
|
batch_size12, |
|
|
if_save_latest13, |
|
|
pretrained_G14, |
|
|
pretrained_D15, |
|
|
gpus16, |
|
|
if_cache_gpu17, |
|
|
if_save_every_weights18, |
|
|
version19, |
|
|
], |
|
|
info3, |
|
|
api_name="train_start", |
|
|
) |
|
|
but4.click(train_index, [training_name, version19], info3) |
|
|
but5.click( |
|
|
train1key, |
|
|
[ |
|
|
training_name, |
|
|
sr2, |
|
|
if_f0_3, |
|
|
dataset_folder, |
|
|
spk_id5, |
|
|
np7, |
|
|
f0method8, |
|
|
save_epoch10, |
|
|
total_epoch11, |
|
|
batch_size12, |
|
|
if_save_latest13, |
|
|
pretrained_G14, |
|
|
pretrained_D15, |
|
|
gpus16, |
|
|
if_cache_gpu17, |
|
|
if_save_every_weights18, |
|
|
version19, |
|
|
gpus_rmvpe, |
|
|
], |
|
|
info3, |
|
|
api_name="train_start_all", |
|
|
) |
|
|
|
|
|
|
|
|
def on_load(): |
|
|
|
|
|
model_result, index_result = change_choices() |
|
|
audio_paths = get_audio_paths('audios') |
|
|
|
|
|
default_model = model_result["choices"][0] if model_result["choices"] else None |
|
|
default_index = index_result["choices"][0] if index_result["choices"] else None |
|
|
default_audio = audio_paths[0] if audio_paths else None |
|
|
|
|
|
return ( |
|
|
gr.update(choices=model_result["choices"], value=default_model), |
|
|
gr.update(choices=index_result["choices"], value=default_index), |
|
|
gr.update(choices=audio_paths, value=default_audio) |
|
|
) |
|
|
|
|
|
app.load( |
|
|
fn=on_load, |
|
|
inputs=[], |
|
|
outputs=[voice_model, file_index2, input_audio0] |
|
|
) |
|
|
|
|
|
if config.iscolab: |
|
|
app.launch(share=True, quiet=False) |
|
|
else: |
|
|
app.launch( |
|
|
server_name="0.0.0.0", |
|
|
inbrowser=not config.noautoopen, |
|
|
server_port=config.listen_port, |
|
|
quiet=True, |
|
|
) |