CrossEncoder based on Alibaba-NLP/gte-multilingual-reranker-base
This is a Cross Encoder model finetuned from Alibaba-NLP/gte-multilingual-reranker-base using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: Alibaba-NLP/gte-multilingual-reranker-base
- Maximum Sequence Length: 512 tokens
- Number of Output Labels: 1 label
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the ๐ค Hub
model = CrossEncoder("cross_encoder_model_id")
# Get scores for pairs of texts
pairs = [
['include the popular publications as well', 'Title: "Americans\' Library use - past 3 months (United States)"\nCollections: YouGov Trackers\nDatasets: YouGovTrackerValueV2\nChart Type: survey:timeseries\nSources: YouGov'],
['Give it a good research topic', 'Title: "The most important issues facing the country (United Kingdom)"\nCollections: YouGov Trackers\nDatasets: YouGovTrackerValueV2\nChart Type: survey:timeseries\nSources: YouGov'],
['When and where are the Denver Broncos playing the Kansas City Chiefs?', 'Title: "Denver Broncos at Kansas City Chiefs"\nCollections: Football\nChart Type: game_score:football'],
['49ers vs Seahawks', 'Title: "Seahawk Deep Ocean Technology, Inc. Overview"\nCollections: Companies\nChart Type: company:finance\nCanonical forms: "Overview"="Stock Overview"\nSources: S&P Global'],
['Comparative review of JBL vs Marshall 2025 Bluetooth speakers', 'Title: "B&C Speakers Overview"\nCollections: Companies\nChart Type: company:finance\nCanonical forms: "B&C Speakers"="B&C Speakers S.p.A.", "Overview"="Stock Overview"\nSources: S&P Global'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'include the popular publications as well',
[
'Title: "Americans\' Library use - past 3 months (United States)"\nCollections: YouGov Trackers\nDatasets: YouGovTrackerValueV2\nChart Type: survey:timeseries\nSources: YouGov',
'Title: "The most important issues facing the country (United Kingdom)"\nCollections: YouGov Trackers\nDatasets: YouGovTrackerValueV2\nChart Type: survey:timeseries\nSources: YouGov',
'Title: "Denver Broncos at Kansas City Chiefs"\nCollections: Football\nChart Type: game_score:football',
'Title: "Seahawk Deep Ocean Technology, Inc. Overview"\nCollections: Companies\nChart Type: company:finance\nCanonical forms: "Overview"="Stock Overview"\nSources: S&P Global',
'Title: "B&C Speakers Overview"\nCollections: Companies\nChart Type: company:finance\nCanonical forms: "B&C Speakers"="B&C Speakers S.p.A.", "Overview"="Stock Overview"\nSources: S&P Global',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Evaluation
Metrics
Cross Encoder Correlation
- Dataset:
validation - Evaluated with
CrossEncoderCorrelationEvaluator
| Metric | Value |
|---|---|
| pearson | 0.8721 |
| spearman | 0.8685 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 24,504 training samples
- Columns:
sentence_0,sentence_1, andlabel - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 2 characters
- mean: 86.83 characters
- max: 993 characters
- min: 77 characters
- mean: 169.16 characters
- max: 360 characters
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence_0 sentence_1 label include the popular publications as wellTitle: "Americans' Library use - past 3 months (United States)"
Collections: YouGov Trackers
Datasets: YouGovTrackerValueV2
Chart Type: survey:timeseries
Sources: YouGov0.5Give it a good research topicTitle: "The most important issues facing the country (United Kingdom)"
Collections: YouGov Trackers
Datasets: YouGovTrackerValueV2
Chart Type: survey:timeseries
Sources: YouGov1.0When and where are the Denver Broncos playing the Kansas City Chiefs?Title: "Denver Broncos at Kansas City Chiefs"
Collections: Football
Chart Type: game_score:football1.0 - Loss:
BinaryCrossEntropyLosswith these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": null }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 32per_device_eval_batch_size: 32num_train_epochs: 5fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | validation_spearman |
|---|---|---|---|
| 0.1305 | 100 | - | 0.7594 |
| 0.2611 | 200 | - | 0.7951 |
| 0.3916 | 300 | - | 0.8050 |
| 0.5222 | 400 | - | 0.8200 |
| 0.6527 | 500 | 0.468 | 0.8290 |
| 0.7833 | 600 | - | 0.8331 |
| 0.9138 | 700 | - | 0.8347 |
| 1.0 | 766 | - | 0.8434 |
| 1.0444 | 800 | - | 0.8432 |
| 1.1749 | 900 | - | 0.8467 |
| 1.3055 | 1000 | 0.4135 | 0.8473 |
| 1.4360 | 1100 | - | 0.8475 |
| 1.5666 | 1200 | - | 0.8535 |
| 1.6971 | 1300 | - | 0.8518 |
| 1.8277 | 1400 | - | 0.8571 |
| 1.9582 | 1500 | 0.3747 | 0.8577 |
| 2.0 | 1532 | - | 0.8556 |
| 2.0888 | 1600 | - | 0.8587 |
| 2.2193 | 1700 | - | 0.8609 |
| 2.3499 | 1800 | - | 0.8612 |
| 2.4804 | 1900 | - | 0.8619 |
| 2.6110 | 2000 | 0.3515 | 0.8626 |
| 2.7415 | 2100 | - | 0.8622 |
| 2.8721 | 2200 | - | 0.8653 |
| 3.0 | 2298 | - | 0.8656 |
| 3.0026 | 2300 | - | 0.8656 |
| 3.1332 | 2400 | - | 0.8643 |
| 3.2637 | 2500 | 0.3421 | 0.8646 |
| 3.3943 | 2600 | - | 0.8654 |
| 3.5248 | 2700 | - | 0.8666 |
| 3.6554 | 2800 | - | 0.8640 |
| 3.7859 | 2900 | - | 0.8685 |
Framework Versions
- Python: 3.12.11
- Sentence Transformers: 5.1.2
- Transformers: 4.57.1
- PyTorch: 2.8.0+cu128
- Accelerate: 1.11.0
- Datasets: 4.2.0
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 1,550
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for TakoData/chart-reranker
Base model
Alibaba-NLP/gte-multilingual-reranker-baseEvaluation results
- Pearson on validationself-reported0.872
- Spearman on validationself-reported0.869