CrossEncoder based on Alibaba-NLP/gte-multilingual-reranker-base

This is a Cross Encoder model finetuned from Alibaba-NLP/gte-multilingual-reranker-base using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

Model Details

Model Description

Model Sources

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import CrossEncoder

# Download from the ๐Ÿค— Hub
model = CrossEncoder("cross_encoder_model_id")
# Get scores for pairs of texts
pairs = [
    ['include the popular publications as well', 'Title: "Americans\' Library use - past 3 months (United States)"\nCollections: YouGov Trackers\nDatasets: YouGovTrackerValueV2\nChart Type: survey:timeseries\nSources: YouGov'],
    ['Give it a good research topic', 'Title: "The most important issues facing the country (United Kingdom)"\nCollections: YouGov Trackers\nDatasets: YouGovTrackerValueV2\nChart Type: survey:timeseries\nSources: YouGov'],
    ['When and where are the Denver Broncos playing the Kansas City Chiefs?', 'Title: "Denver Broncos at Kansas City Chiefs"\nCollections: Football\nChart Type: game_score:football'],
    ['49ers vs Seahawks', 'Title: "Seahawk Deep Ocean Technology, Inc. Overview"\nCollections: Companies\nChart Type: company:finance\nCanonical forms: "Overview"="Stock Overview"\nSources: S&P Global'],
    ['Comparative review of JBL vs Marshall 2025 Bluetooth speakers', 'Title: "B&C Speakers Overview"\nCollections: Companies\nChart Type: company:finance\nCanonical forms: "B&C Speakers"="B&C Speakers S.p.A.", "Overview"="Stock Overview"\nSources: S&P Global'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    'include the popular publications as well',
    [
        'Title: "Americans\' Library use - past 3 months (United States)"\nCollections: YouGov Trackers\nDatasets: YouGovTrackerValueV2\nChart Type: survey:timeseries\nSources: YouGov',
        'Title: "The most important issues facing the country (United Kingdom)"\nCollections: YouGov Trackers\nDatasets: YouGovTrackerValueV2\nChart Type: survey:timeseries\nSources: YouGov',
        'Title: "Denver Broncos at Kansas City Chiefs"\nCollections: Football\nChart Type: game_score:football',
        'Title: "Seahawk Deep Ocean Technology, Inc. Overview"\nCollections: Companies\nChart Type: company:finance\nCanonical forms: "Overview"="Stock Overview"\nSources: S&P Global',
        'Title: "B&C Speakers Overview"\nCollections: Companies\nChart Type: company:finance\nCanonical forms: "B&C Speakers"="B&C Speakers S.p.A.", "Overview"="Stock Overview"\nSources: S&P Global',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]

Evaluation

Metrics

Cross Encoder Correlation

Metric Value
pearson 0.8721
spearman 0.8685

Training Details

Training Dataset

Unnamed Dataset

  • Size: 24,504 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 2 characters
    • mean: 86.83 characters
    • max: 993 characters
    • min: 77 characters
    • mean: 169.16 characters
    • max: 360 characters
    • min: 0.0
    • mean: 0.42
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    include the popular publications as well Title: "Americans' Library use - past 3 months (United States)"
    Collections: YouGov Trackers
    Datasets: YouGovTrackerValueV2
    Chart Type: survey:timeseries
    Sources: YouGov
    0.5
    Give it a good research topic Title: "The most important issues facing the country (United Kingdom)"
    Collections: YouGov Trackers
    Datasets: YouGovTrackerValueV2
    Chart Type: survey:timeseries
    Sources: YouGov
    1.0
    When and where are the Denver Broncos playing the Kansas City Chiefs? Title: "Denver Broncos at Kansas City Chiefs"
    Collections: Football
    Chart Type: game_score:football
    1.0
  • Loss: BinaryCrossEntropyLoss with these parameters:
    {
        "activation_fn": "torch.nn.modules.linear.Identity",
        "pos_weight": null
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • num_train_epochs: 5
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • project: huggingface
  • trackio_space_id: trackio
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: no
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: True
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss validation_spearman
0.1305 100 - 0.7594
0.2611 200 - 0.7951
0.3916 300 - 0.8050
0.5222 400 - 0.8200
0.6527 500 0.468 0.8290
0.7833 600 - 0.8331
0.9138 700 - 0.8347
1.0 766 - 0.8434
1.0444 800 - 0.8432
1.1749 900 - 0.8467
1.3055 1000 0.4135 0.8473
1.4360 1100 - 0.8475
1.5666 1200 - 0.8535
1.6971 1300 - 0.8518
1.8277 1400 - 0.8571
1.9582 1500 0.3747 0.8577
2.0 1532 - 0.8556
2.0888 1600 - 0.8587
2.2193 1700 - 0.8609
2.3499 1800 - 0.8612
2.4804 1900 - 0.8619
2.6110 2000 0.3515 0.8626
2.7415 2100 - 0.8622
2.8721 2200 - 0.8653
3.0 2298 - 0.8656
3.0026 2300 - 0.8656
3.1332 2400 - 0.8643
3.2637 2500 0.3421 0.8646
3.3943 2600 - 0.8654
3.5248 2700 - 0.8666
3.6554 2800 - 0.8640
3.7859 2900 - 0.8685

Framework Versions

  • Python: 3.12.11
  • Sentence Transformers: 5.1.2
  • Transformers: 4.57.1
  • PyTorch: 2.8.0+cu128
  • Accelerate: 1.11.0
  • Datasets: 4.2.0
  • Tokenizers: 0.22.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
1,550
Safetensors
Model size
0.3B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for TakoData/chart-reranker

Finetuned
(8)
this model

Evaluation results