Qwen3-32B-medqa
This model is a fine-tuned version of Qwen/Qwen3-32B on the medqa dataset. It achieves the following results on the evaluation set:
- Loss: 0.0258
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 2.1927 | 0.0582 | 10 | 2.0806 |
| 0.1655 | 0.1164 | 20 | 0.1102 |
| 0.0307 | 0.1745 | 30 | 0.0408 |
| 0.0305 | 0.2327 | 40 | 0.0329 |
| 0.0291 | 0.2909 | 50 | 0.0311 |
| 0.0255 | 0.3491 | 60 | 0.0300 |
| 0.0325 | 0.4073 | 70 | 0.0292 |
| 0.0259 | 0.4655 | 80 | 0.0285 |
| 0.0305 | 0.5236 | 90 | 0.0276 |
| 0.0275 | 0.5818 | 100 | 0.0267 |
| 0.0274 | 0.64 | 110 | 0.0263 |
| 0.0253 | 0.6982 | 120 | 0.0256 |
| 0.0196 | 0.7564 | 130 | 0.0252 |
| 0.0223 | 0.8145 | 140 | 0.0248 |
| 0.0259 | 0.8727 | 150 | 0.0246 |
| 0.0238 | 0.9309 | 160 | 0.0242 |
| 0.0228 | 0.9891 | 170 | 0.0241 |
| 0.0163 | 1.0465 | 180 | 0.0243 |
| 0.0155 | 1.1047 | 190 | 0.0240 |
| 0.0238 | 1.1629 | 200 | 0.0239 |
| 0.0186 | 1.2211 | 210 | 0.0241 |
| 0.022 | 1.2793 | 220 | 0.0239 |
| 0.0174 | 1.3375 | 230 | 0.0239 |
| 0.0212 | 1.3956 | 240 | 0.0236 |
| 0.0194 | 1.4538 | 250 | 0.0235 |
| 0.0176 | 1.512 | 260 | 0.0233 |
| 0.0223 | 1.5702 | 270 | 0.0234 |
| 0.019 | 1.6284 | 280 | 0.0236 |
| 0.0174 | 1.6865 | 290 | 0.0234 |
| 0.0166 | 1.7447 | 300 | 0.0233 |
| 0.0153 | 1.8029 | 310 | 0.0234 |
| 0.0138 | 1.8611 | 320 | 0.0234 |
| 0.0212 | 1.9193 | 330 | 0.0231 |
| 0.0225 | 1.9775 | 340 | 0.0230 |
| 0.0104 | 2.0349 | 350 | 0.0232 |
| 0.0102 | 2.0931 | 360 | 0.0247 |
| 0.0116 | 2.1513 | 370 | 0.0251 |
| 0.0091 | 2.2095 | 380 | 0.0251 |
| 0.0139 | 2.2676 | 390 | 0.0253 |
| 0.0088 | 2.3258 | 400 | 0.0254 |
| 0.0099 | 2.384 | 410 | 0.0253 |
| 0.0089 | 2.4422 | 420 | 0.0254 |
| 0.0128 | 2.5004 | 430 | 0.0256 |
| 0.0101 | 2.5585 | 440 | 0.0254 |
| 0.0115 | 2.6167 | 450 | 0.0254 |
| 0.0113 | 2.6749 | 460 | 0.0256 |
| 0.0105 | 2.7331 | 470 | 0.0257 |
| 0.0086 | 2.7913 | 480 | 0.0258 |
| 0.0081 | 2.8495 | 490 | 0.0258 |
| 0.0099 | 2.9076 | 500 | 0.0258 |
| 0.0134 | 2.9658 | 510 | 0.0257 |
Framework versions
- PEFT 0.15.2
- Transformers 4.52.3
- Pytorch 2.7.0+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for airesearch/Qwen3-32B-medqa
Base model
Qwen/Qwen3-32B